A Certain Subclass of Multivalent Analytic Functions Defined by the q-Difference Operator Related to the Janowski Functions
Abstract
:1. Introduction
- (1)
- For , we obtain , the family of p-valent q-starlike functions associated with Janowski function;
- (2)
- For , and , we obtain , the family of p-valent q-starlike functions;
- (3)
- For , , and , we have , the family of p-valent starlike functions;
- (4)
- For , , , and , we obtain , the family of starlike functions.
2. Main Results
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jackson, F.H. On q-defnite integrals. Quart. J. Pure Appl. Math. 1910, 41, 193–203. [Google Scholar]
- Jackson, F.H. On q-functions and a certain difference operator. Trans. R. Soc. Edinb. 1908, 46, 64–72. [Google Scholar] [CrossRef]
- Ismail, M.E.H.; Merkes, E.; Styer, D. A generalization of starlike functions. Complex Var. Theory Appl. 1990, 14, 77–84. [Google Scholar] [CrossRef]
- Aral, A. On the generalized Picard and Gauss-Weierstrass singular integrals. J. Comput. Anal. Appl. 2006, 8, 249–261. [Google Scholar]
- Anastassiou, G.A.; Gal, S.G. Geometric and approximation properties of generalized singular integrals in the unit disk. J. Korean Math. Soc. 2006, 43, 425–443. [Google Scholar] [CrossRef]
- Anastassiou, G.A.; Gal, S.G. Geometric and approximation properties of some singular integrals in the unit disk. J. Inequal. Appl. 2006, 2006, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Janowski, W. Some extremal problems for certain families of analytic functions. Ann. Pol. Math. 1973, 28, 297–326. [Google Scholar] [CrossRef] [Green Version]
- Rehman, M.S.U.; Ahmad, Q.Z.; Srivastava, H.M.; Khan, N.; Darus, M.; Khan, B. Applications of higher-order q-derivatives to the subclass of q-starlike functions associated with the Janowski functions. AIMS Math. 2021, 6, 1110–1125. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Khan, B.; Khan, N.; Ahmad, Q.Z. Coefficient inequalities for q-starlike functions associated with the Janowski functions. Hokkaido Math. J. 2019, 48, 407–425. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Tahir, M.; Khan, B.; Ahmad, Q.Z.; Khan, N. Some general classes of q-starlike functions associated with the Janowski functions. Symmetry 2019, 11–292. [Google Scholar]
- Aldweby, H.; Darus, M. Coefficient estimates of classes of q-starlike and q-convex functions. Adv. Stud. Contemp. Math. 2016, 26, 21–26. [Google Scholar]
- Arif, M.; Srivastava, H.M.; Umar, S. Some applications of a q-analogue of the Ruscheweyh type operator for multivalent functions. Rev. Real Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. 2019, 113, 1211–1221. [Google Scholar] [CrossRef]
- Aouf, M.K.; Seoudy, T.M. Convolution properties for classes of bounded analytic functions with complex order defined by q-derivative operator. Rev. Real Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. 2019, 113, 1279–1288. [Google Scholar] [CrossRef]
- Aldweby, H.; Darus, M. Integral operator defined by q-analogue of Liu-Srivastava operator. Studia Univ. Babeş-Bolyai Ser. Math. 2013, 58, 529–537. [Google Scholar]
- Mahmmod, S.; Sokół, J. New subclass of analytic functions in conical domain associated with Ruscheweyh q-differential operator. Results Math. 2017, 71, 1345–1357. [Google Scholar] [CrossRef]
- Seoudy, T.M.; Aouf, M.K. Coefficient estimates of new classes of q-starlike and q-convex functions of complex order. J. Math. Inequal. 2016, 10, 135–145. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, H.M.; Bansal, D. Close-to-convexity of a certain family of q-Mittag-Leffler functions. J. Nonlinear Var. Anal. 2017, 1, 61–69. [Google Scholar]
- Srivastava, H.M. Operators of basic (or q-) calculus and fractional q-calculus and their applications in geometric function theory of complex analysis. Iran. J. Sci. Technol. Trans. A Sci. 2020, 44, 327–344. [Google Scholar] [CrossRef]
- Fekete, M.; Szegö, G. Eine Bemerkung Über ungerade schlichte Funktionen. J. Lond. Math. Soc. 1933, 8, 85–89. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Raza, N.; AbuJarad, E.S.A.; Srivastava, G.; AbuJarad, M.H. Fekete-Szegö inequality for classes of (p;q)-starlike and (p;q)-convex functions. Rev. Real Acad. Cienc. Exactas Fís Nat. Ser. A Mat. 2019, 113, 3563–3584. [Google Scholar] [CrossRef]
- Ali, R.M.; Ravichandran, V.; Seenivasagan, N. Coefficient bounds for p-valent functions. Appl. Math. Comput. 2007, 187, 35–46. [Google Scholar] [CrossRef]
- Keogh, F.R.; Merkes, E.P. A coefficient inequality for certain classes of analytic functions. Proc. Am. Math. Soc. 1969, 20, 8–12. [Google Scholar] [CrossRef]
- Ma, W.C.; Minda, D. A unified treatment of some special classes of univalent functions. In Proceedings of the International Conference on Complex Analysis, Tianjin, China, 19–23 June 1992; pp. 157–169. [Google Scholar]
- Prokhorov, D.V.; Szynal, J. Inverse coefficients for (α;β)-convex functions. Ann. Univ. Mariae Curie-Skłodowska Sect. 1981, 35, 125–143. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, B.; Srivastava, R.; Liu, J.-L. A Certain Subclass of Multivalent Analytic Functions Defined by the q-Difference Operator Related to the Janowski Functions. Mathematics 2021, 9, 1706. https://doi.org/10.3390/math9141706
Wang B, Srivastava R, Liu J-L. A Certain Subclass of Multivalent Analytic Functions Defined by the q-Difference Operator Related to the Janowski Functions. Mathematics. 2021; 9(14):1706. https://doi.org/10.3390/math9141706
Chicago/Turabian StyleWang, Bo, Rekha Srivastava, and Jin-Lin Liu. 2021. "A Certain Subclass of Multivalent Analytic Functions Defined by the q-Difference Operator Related to the Janowski Functions" Mathematics 9, no. 14: 1706. https://doi.org/10.3390/math9141706
APA StyleWang, B., Srivastava, R., & Liu, J.-L. (2021). A Certain Subclass of Multivalent Analytic Functions Defined by the q-Difference Operator Related to the Janowski Functions. Mathematics, 9(14), 1706. https://doi.org/10.3390/math9141706