materials-logo

Journal Browser

Journal Browser

Advanced High-Performance Metal Matrix Composites (MMCs)

A special issue of Materials (ISSN 1996-1944). This special issue belongs to the section "Advanced Composites".

Deadline for manuscript submissions: closed (20 February 2025) | Viewed by 14146

Special Issue Editors


E-Mail Website
Guest Editor
Erich-Schmid-Institut für Materialwissenschaft, Österreichischen Akademie der Wissenschaften, Leoben, Austria
Interests: microstructure-process-property relationships; small punch creep test in high temperature aluminum (HITEMAL); high-performance metal matrix composite (MMCs); smart dry mechanical powder processing; 1-hydrogen production & embrittlement in steel; ni based alloys
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

This Special Issue will be driven to investigate high-performance metal matrix composites (MMCs) with solutions borrowed from biological materials such as nacre of shell, tuning and retention of unique nanoparticle physical properties in composites, heterogeneous structuring of materials across multiple length scales, and smart powder processing to produce advance fed materials with the capability of concurrently improving the strength and ductility of advanced materials. This Special Issue aims to:

(1) Fabricate and develop high-performance metal matrix composites, especially aluminum-based composites, emphasizing and tailoring the architectural designs to overcome the trade-off of strength and ductility in metal matrix composites, as a critical need of automotive and aerospace engineering fields.

(2) Study and develop a heterostructure strategy for toughening particulate-reinforced metal matrix composites through the powder assembly route of powder metallurgy to design the architecture of various particulate metal matrix composites with high strength and high ductility.

(3) Develop new engineered particulates with tailored properties using dry particle coating (as a smart powder processing) for use as advanced high strength-to-weight ratio metal matrix composite materials; this includes high effective core–shell structures, advanced powder materials with deactivated sintering properties, highly enhanced discharge capacity retention in lithium-ion batteries, and attaining an excellent uniform dispersion with maximum structural integrity, especially for nano-carbons reinforcements (CNTs and graphene).

(4) Studying and focusing on the changing properties that occur throughout the processing and operation of metal matrix composites to seek widely-applicable property relationships, emphasizing and utilizing the opportunities made available by core–shelled powders prepared by smart dry processing.

Dr. Behzad Sadeghi
Dr. Catalin I. Pruncu
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Materials is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • high-performance MMCs
  • tailoring the microstructure
  • architecture design
  • strength–ductility trade-off
  • aluminum-based matrix composites
  • nanocarbons (CNT, Graphene, etc.)
  • dry powder processing

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (8 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Editorial

Jump to: Research, Review

2 pages, 164 KiB  
Editorial
Advancing High-Performance Metal Matrix Composites: Uniting Nature’s Design and Engineering Innovation
by Behzad Sadeghi
Materials 2023, 16(18), 6077; https://doi.org/10.3390/ma16186077 - 5 Sep 2023
Viewed by 1353
Abstract
We are pleased to present this Special Issue entitled “Advanced High-Performance Metal Matrix Composites (MMCs),” which explores promising materials science that will change everything from aerospace to automotive technology [...] Full article
(This article belongs to the Special Issue Advanced High-Performance Metal Matrix Composites (MMCs))

Research

Jump to: Editorial, Review

21 pages, 8847 KiB  
Article
The Importance of Laser Beam Power on the Microstructure and Wear Behavior of Al-WC Composite Layers Produced by Laser Surface Alloying
by Natalia Makuch and Piotr Dziarski
Materials 2025, 18(9), 1899; https://doi.org/10.3390/ma18091899 - 22 Apr 2025
Viewed by 176
Abstract
Laser alloying was used to form metal matrix composite layers strengthened by WC particles. The process parameters were selected in such a way that there was no complete melting of the WC particles. Four different laser beam powers (from 0.65 kW to 1.3 [...] Read more.
Laser alloying was used to form metal matrix composite layers strengthened by WC particles. The process parameters were selected in such a way that there was no complete melting of the WC particles. Four different laser beam powers (from 0.65 kW to 1.3 kW) were used, generating different temperature distributions during processing. The temperature across the laser track axis was determined according to the mathematical model proposed by Ashby and Esterling. All layers produced contained unmelted WC particles in an aluminum-based matrix. The depth of the WC-Al composite layers strongly depended on the applied laser beam power. The lowest thickness of 198 ± 36 µm was measured for the layer produced at a laser beam power of 0.65 kW. A twofold increase in power P was the reason for obtaining a thickness thAZ = 387 ± 21 µm. The power of the laser beam also affected the percentage of the substrate material (7075 alloy) in the molten pool during the laser processing. As a result, the highest amount of substrate material was obtained for the WC-Al composite layer produced using the highest laser beam power P = 1.3 kW. Simultaneously, this layer was characterized by the lowest percentage of tungsten carbide particles in this layer. The temperature profile along the axis of the laser track and also the maximum temperature reached confirmed the difference in the bonding between the reinforcing WC particles and the metal matrix. For P = 0.65 kW, too low a temperature was reached for the tungsten carbide particles to overmelt, resulting in poor bonding to the metallic matrix in the layer. Moreover, the layer showed serious defects such as discontinuity, porosity, and cracks. As a result, the WC-Al composite layer produced at the lowest laser beam power was characterized by a wear resistance lower (Imw = 6.094 mg/cm2/h) than the 7075 alloy without surface layer (Imw = 5.288 mg/cm2). The highest wear resistance was characteristic of the 7075 alloy laser alloyed with a laser beam power equal to 1.17 kW (Imw = 2.475 mg/cm2/h). This layer showed satisfactory quality and adhesion to the substrate material. Full article
(This article belongs to the Special Issue Advanced High-Performance Metal Matrix Composites (MMCs))
Show Figures

Figure 1

21 pages, 10198 KiB  
Article
Transformation of Cu2O into Metallic Copper within Matrix of Carboxylic Cation Exchangers: Synthesis and Thermogravimetric Studies of Novel Composite Materials
by Elżbieta Kociołek-Balawejder, Katarzyna Winiarska, Juliusz Winiarski and Igor Mucha
Materials 2024, 17(16), 3893; https://doi.org/10.3390/ma17163893 - 6 Aug 2024
Cited by 3 | Viewed by 1076
Abstract
In order to systematize and expand knowledge about copper-containing composite materials as hybrid ion exchangers, in this study, fine metallic copper particles were dispersed within the matrix of a carboxyl cation exchanger (CCE) with a macroporous and gel-type structure thanks to the reduction [...] Read more.
In order to systematize and expand knowledge about copper-containing composite materials as hybrid ion exchangers, in this study, fine metallic copper particles were dispersed within the matrix of a carboxyl cation exchanger (CCE) with a macroporous and gel-type structure thanks to the reduction of Cu2O particles precipitated within the matrix earlier. It was possible to introduce as much as 22.0 wt% Cu0 into a gel-type polymeric carrier (G/H#Cu) when an ascorbic acid solution was used to act as a reducer of Cu2O and a reagent transforming the functional groups from Na+ into the H+ form. The extremely high shrinkage of the porous skeleton containing –COOH groups (in a wet and also dry state) and its limited affinity for water protected the copper from oxidation without the use of special conditions. When macroporous CCE was used as a host material, the composite material (M/H#Cu) contained 18.5 wt% Cu, and copper particles were identified inside the resin beads, but not on their surface where Cu2+ ions appeared during drying. Thermal analysis in an air atmosphere and under N2 showed that dispersing metallic copper within the resin matrix accelerated its decomposition in both media, whereby M/H#Cu decomposed faster than G/H#Cu. It was found that G/H#Cu contained 6.0% bounded water, less than M/H#Cu (7.5%), and that the solid residue after combustion of G/H#Cu and M/H#Cu was CuO (26.28% and 22.80%), while after pyrolysis the solid residue (39.35% and 26.23%) was a mixture of carbon (50%) and metallic copper (50%). The presented composite materials thanks to the antimicrobial, catalytic, reducing, deoxygenating and hydrophobic properties of metallic copper can be used for point-of-use and column water/wastewater treatment systems. Full article
(This article belongs to the Special Issue Advanced High-Performance Metal Matrix Composites (MMCs))
Show Figures

Graphical abstract

29 pages, 17786 KiB  
Article
A Comparative Study on the Wear Performance and High-Temperature Oxidation of Co-Free Cermets and Hardmetals
by Ángel Biedma, Gabriel Sánchez, María de Nicolás, Claudio Bertalan, Ralph Useldinger, Luis Llanes and Elena Gordo
Materials 2024, 17(14), 3615; https://doi.org/10.3390/ma17143615 - 22 Jul 2024
Cited by 2 | Viewed by 2047
Abstract
The present investigation addresses the mechanical properties, wear behaviour, and high-temperature oxidation of cermets and hardmetals based on either Ti(C,N) or WC and a metal binder based on Fe15Ni or Fe15Ni10Cr. This study also includes a commercial-grade WC-Co for comparative purposes. The production [...] Read more.
The present investigation addresses the mechanical properties, wear behaviour, and high-temperature oxidation of cermets and hardmetals based on either Ti(C,N) or WC and a metal binder based on Fe15Ni or Fe15Ni10Cr. This study also includes a commercial-grade WC-Co for comparative purposes. The production of these materials involved a powder metallurgy and sinter-HIP processing route under identical conditions. It is found that WC-based materials have superior mechanical properties, including hardness, fracture toughness, transversal rupture strength (TRS), and wear response, compared to Ti(C,N)-based materials. However, the latter show better oxidation behaviour than the former. Notably, WC-FeNi exhibits a higher hardness and TRS than the commercial-grade material (an increase of 7% and 9%, respectively). The difference in wear behaviour is due to the difference in wear mechanisms. In this regard, cermets wear through a tribolayer of Ti and Fe oxides, while hardmetals primarily wear through abrasion from ploughing. Thus, hardmetals exhibit a lower coefficient of friction (COF) and wear rate than cermets. Furthermore, Ti(C,N)-based materials form a protective layer of TiO2, which enhances their integrity and reduces mass gain. The addition of Cr to the FeNi binder only appears to have a clear effect on the TRS of the materials. Full article
(This article belongs to the Special Issue Advanced High-Performance Metal Matrix Composites (MMCs))
Show Figures

Graphical abstract

19 pages, 8428 KiB  
Article
Numerical Simulation and ANN Prediction of Crack Problems within Corrosion Defects
by Meng Ren, Yanmei Zhang, Mu Fan and Zhongmin Xiao
Materials 2024, 17(13), 3237; https://doi.org/10.3390/ma17133237 - 1 Jul 2024
Cited by 2 | Viewed by 1202
Abstract
Buried pipelines are widely used, so it is necessary to analyze and study their fracture characteristics. The locations of corrosion defects on the pipe are more susceptible to fracture under the influence of internal pressure generated during material transportation. In the open literature, [...] Read more.
Buried pipelines are widely used, so it is necessary to analyze and study their fracture characteristics. The locations of corrosion defects on the pipe are more susceptible to fracture under the influence of internal pressure generated during material transportation. In the open literature, a large number of studies have been conducted on the failure pressure or residual strength of corroded pipelines. On this basis, this study conducts a fracture analysis on buried pipelines with corrosion areas under seismic loads. The extended finite element method was used to model and analyze the buried pipeline under seismic load, and it was found that the stress value at the crack tip was maximum when the circumferential angle of the crack was near 5° in the corrosion area. The changes in the stress field at the crack tip in the corrosion zone of the pipeline under different loads were compared. Based on the BP algorithm, a neural network model that can predict the stress field at the pipe crack tip is established. The neural network is trained using numerical model data, and a prediction model with a prediction error of less than 10% is constructed. The crack tip characteristics were further studied using the BP neural network model, and it was determined that the tip stress fluctuation range is between 450 MPa and 500 MPa. The neural network model is optimized based on the GA algorithm, which solves the problem of convergence difficulties and improves the prediction accuracy. According to the prediction results, it is found that when the internal pressure increases, the corrosion depth will significantly affect the crack tip stress field. The maximum error of the optimized neural network is 5.32%. The calculation data of the optimized neural network model were compared with the calculation data of other models, and it was determined that GA-BPNN has better adaptability in this research problem. Full article
(This article belongs to the Special Issue Advanced High-Performance Metal Matrix Composites (MMCs))
Show Figures

Figure 1

13 pages, 22361 KiB  
Article
Preparation of NiAl-AlMg6 Functionally Graded Composite Using the Energy of a Highly Exothermic Ti-C Mixture during Self-Propagating High-Temperature Synthesis
by Igor Denisov, Stepan Seropyan, Andrey Malakhov and Denis Shakhray
Materials 2023, 16(24), 7584; https://doi.org/10.3390/ma16247584 - 10 Dec 2023
Viewed by 1169
Abstract
A functionally graded composite NiAl-AlMg6 was prepared using the pressure of gaseous reaction products (impurity gases) produced during the synthesis of reactive powders in a sealed reactor. It has been shown that this method can be used to prepare a NiAl/AlMg6 composite with [...] Read more.
A functionally graded composite NiAl-AlMg6 was prepared using the pressure of gaseous reaction products (impurity gases) produced during the synthesis of reactive powders in a sealed reactor. It has been shown that this method can be used to prepare a NiAl/AlMg6 composite with both chaotically oriented pores in the NiAl layer and unidirectionally oriented pores (lotus-type pores). The pore shape in NiAl was found to be dependent on the pressure of the impurity gases and hydrogen present in the starting titanium powder. A mechanism for pore formation in NiAl and AlMg6 composite during SHS is proposed. Thus, functionally graded high-temperature composites can be produced by SHS in a sealed reactor using the chemical reaction energy and the pressure of impurity gases and hydrogen. Additionally, minimizing the influence of impurity gases on the contact zone increases the interface area between NiAl and AlMg6. Full article
(This article belongs to the Special Issue Advanced High-Performance Metal Matrix Composites (MMCs))
Show Figures

Figure 1

Review

Jump to: Editorial, Research

27 pages, 6034 KiB  
Review
High-Performance Advanced Composites in Multifunctional Material Design: State of the Art, Challenges, and Future Directions
by Sónia Simões
Materials 2024, 17(23), 5997; https://doi.org/10.3390/ma17235997 - 7 Dec 2024
Cited by 11 | Viewed by 3130
Abstract
This review examines high-performance advanced composites (HPACs) for lightweight, high-strength, and multi-functional applications. Fiber-reinforced composites, particularly those utilizing carbon, glass, aramid, and nanofibers, are highlighted for their exceptional mechanical, thermal, and environmental properties. These materials enable diverse applications, including in the aerospace, automotive, [...] Read more.
This review examines high-performance advanced composites (HPACs) for lightweight, high-strength, and multi-functional applications. Fiber-reinforced composites, particularly those utilizing carbon, glass, aramid, and nanofibers, are highlighted for their exceptional mechanical, thermal, and environmental properties. These materials enable diverse applications, including in the aerospace, automotive, energy, and defense sectors. In extreme conditions, matrix materials—polymers, metals, and ceramics—and advanced reinforcement materials must be carefully chosen to optimize performance and durability. Significant advancements in manufacturing techniques, such as automated and additive methods, have improved precision, reduced waste, and created highly customized and complex structures. Multifunctional composites integrating structural properties with energy storage and sensing capabilities are emerging as a breakthrough aligned with the trend toward smart material systems. Despite these advances, challenges such as recyclability, scalability, cost, and robust quality assurance remain. Addressing these issues will require the development of sustainable and bio-based composites, alongside efficient recycling solutions, to minimize their environmental impact and ensure long-term technological viability. The development of hybrid composites and nanocomposites to achieve multifunctionality while maintaining structural integrity will also be described. Full article
(This article belongs to the Special Issue Advanced High-Performance Metal Matrix Composites (MMCs))
Show Figures

Figure 1

27 pages, 2964 KiB  
Review
Reviewing the Integrated Design Approach for Augmenting Strength and Toughness at Macro- and Micro-Scale in High-Performance Advanced Composites
by Behzad Sadeghi and Pasquale Daniele Cavaliere
Materials 2023, 16(17), 5745; https://doi.org/10.3390/ma16175745 - 22 Aug 2023
Cited by 22 | Viewed by 2660
Abstract
In response to the growing demand for high-strength and high-toughness materials in industries such as aerospace and automotive, there is a need for metal matrix composites (MMCs) that can simultaneously increase strength and toughness. The mechanical properties of MMCs depend not only on [...] Read more.
In response to the growing demand for high-strength and high-toughness materials in industries such as aerospace and automotive, there is a need for metal matrix composites (MMCs) that can simultaneously increase strength and toughness. The mechanical properties of MMCs depend not only on the content of reinforcing elements, but also on the architecture of the composite (shape, size, and spatial distribution). This paper focuses on the design configurations of MMCs, which include both the configurations resulting from the reinforcements and the inherent heterogeneity of the matrix itself. Such high-performance MMCs exhibit excellent mechanical properties, such as high strength, plasticity, and fracture toughness. These properties, which are not present in conventional homogeneous materials, are mainly due to the synergistic effects resulting from the interactions between the internal components, including stress–strain gradients, geometrically necessary dislocations, and unique interfacial behavior. Among them, aluminum matrix composites (AMCs) are of particular importance due to their potential for weight reduction and performance enhancement in aerospace, electronics, and electric vehicles. However, the challenge lies in the inverse relationship between strength and toughness, which hinders the widespread use and large-scale development of MMCs. Composite material design plays a critical role in simultaneously improving strength and toughness. This review examines the advantages of toughness, toughness mechanisms, toughness distribution properties, and structural parameters in the development of composite structures. The development of synthetic composites with homogeneous structural designs inspired by biological composites such as bone offers insights into achieving exceptional strength and toughness in lightweight structures. In addition, understanding fracture behavior and toughness mechanisms in heterogeneous nanostructures is critical to advancing the field of metal matrix composites. The future development direction of architectural composites and the design of the reinforcement and toughness of metal matrix composites based on energy dissipation theory are also proposed. In conclusion, the design of composite architectures holds enormous potential for the development of composites with excellent strength and toughness to meet the requirements of lightweight structures in various industries. Full article
(This article belongs to the Special Issue Advanced High-Performance Metal Matrix Composites (MMCs))
Show Figures

Graphical abstract

Back to TopTop