materials-logo

Journal Browser

Journal Browser

Advanced Materials and Technologies for Wastewater Treatment Applications

A special issue of Materials (ISSN 1996-1944). This special issue belongs to the section "Green Materials".

Deadline for manuscript submissions: 20 August 2025 | Viewed by 622

Special Issue Editor

Special Issue Information

Dear Colleagues,

With increasing industrialisation, population growth, and urban development, both water scarcity and water pollution pose a threat to human welfare and ecosystems. Wastewater can be both a hazard and a precious resource for our world. Advanced materials and technologies such as membranes, functionalised materials, and advanced oxidation could turn wastewater into a significant water source for both industrial and domestic usages. Furthermore, these technologies can manage persistent chemicals of concern and recover valuable resources from wastewater, which is not achievable via conventional treatment methods.

The aim of this Special Issue is to cover the advancement of new approaches that could solve the existing issues in wastewater treatment through material innovations, such as the application of sustainable materials/adsorbent, membrane functionalisation, adsorbent modification, and oxidation enhancement.

Dr. Jianhua Zhang
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Materials is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • wastewater
  • material
  • advanced oxidation
  • adsorption
  • membrane
  • functionalization

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

15 pages, 2028 KiB  
Article
Assessing the Performance of Different Treatment Methods in Removing Tetracycline from Wastewater: Efficiency and Cost Evaluation
by Kehinde Shola Obayomi, Zongli Xie, Stephen R. Gray and Jianhua Zhang
Materials 2025, 18(9), 2134; https://doi.org/10.3390/ma18092134 - 6 May 2025
Viewed by 486
Abstract
To tackle the pollution of tetracycline (TC) in aqueous environments, a few treatment methods, including ozonation, adsorption, and photocatalytic degradation, were compared using a novel and sustainable granular activated carbon-based zinc oxide nanoparticle (ZnO@GAC) composite. The results demonstrate that the ZnO@GAC composite towards [...] Read more.
To tackle the pollution of tetracycline (TC) in aqueous environments, a few treatment methods, including ozonation, adsorption, and photocatalytic degradation, were compared using a novel and sustainable granular activated carbon-based zinc oxide nanoparticle (ZnO@GAC) composite. The results demonstrate that the ZnO@GAC composite towards TC exhibited a high removal efficiency of 82.1% in a batch adsorption system. Moreover, the photocatalytic TC degradation study on ZnO@GAC under UV light yields a maximum degradation efficiency of 86.4% with a pseudo-first-order rate constant value of 0.0059 min−1. Ozonation treatment resulted in TC and total organic carbon (TOC) removal reaching a maximum of 95.3% and 79.7% for 4 mg O3/min and 99.6% and 86.6% for 16 mg O3/min after 10 min. Overall, in comparing the adsorption, photocatalysis, and ozonation techniques, in terms of removal efficiency and time, ozonation was found to be more promising for treating TC, while in terms of cost-effectiveness, the adsorption process is preferable. Finally, the application of the developed composite in municipal and hospital wastewater using adsorption, photocatalytic degradation, and ozonation techniques revealed that the TOC removal efficiencies were higher for hospital wastewater than municipal wastewater. Furthermore, the applicability of these techniques in treating hospital wastewater containing pharmaceuticals, antibiotics, fungicides, and antimicrobial pollutants shows an outstanding result after treatment. In conclusion, the technologies studied in this research can significantly improve the efficiency and effectiveness of wastewater treatment applications, providing a sustainable, cost-effective, and eco-friendly solution. Full article
Show Figures

Graphical abstract

Back to TopTop