materials-logo

Journal Browser

Journal Browser

Fatigue and Fracture of Additive Manufacturing Materials and Components

A special issue of Materials (ISSN 1996-1944). This special issue belongs to the section "Mechanics of Materials".

Deadline for manuscript submissions: 20 January 2026 | Viewed by 627

Special Issue Editor


E-Mail Website
Guest Editor
Department of Mechanical Engineering, Escuela de Ingeniería de Bilbao, University of the Basque Country, Alameda de Urquijo s/n, 48013 Bilbao, Spain
Interests: mechanical design and analysis; analytical and numerical simulation; fatigue and fracture design
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Additive manufacturing (AM), recognized for its numerous advantages over subtractive manufacturing, is increasingly regarded as a transformative technology across various industrial sectors and applications. The fatigue and fracture behavior of AM materials is significantly influenced by factors such as defects, residual stresses, heterogeneous microstructures, and surface roughness. In this context, both academia and industry have concentrated their efforts on two main research directions: On the one hand, optimizing manufacturing processes to achieve materials with enhanced fracture and fatigue resistance. On the other hand, developing models to characterize and predict these types of failure, which can serve as design tools for AM components.

In alignment with the above, this Special Issue seeks to compile the latest advancements aimed at improving the mechanical performance of AM materials and components regarding fatigue and fracture failures. Contributions that focus on the optimization of the manufacturing and/or post-processing process from a materials point of view, as well as those that present methods that enable the characterization and prediction of this type of failure from a mechanical design point of view, are welcome. Submissions in the form of review articles, original research papers, and case studies addressing these topics will be accepted.

Dr. Mikel Abasolo
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Materials is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • additive manufacturing
  • fatigue
  • fracture
  • materials
  • manufacturing process
  • components
  • mechanical design
  • models
  • experimental

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

19 pages, 3236 KiB  
Article
Effect of Microstructure and Crystallographic Texture on the Fracture Toughness Anisotropy of LPBF IN718
by José David Perez-Ruiz, Wilmer Velilla-Díaz, Mikel Abasolo, Gaizka Gómez Escudero and Luis Norberto López de Lacalle
Materials 2025, 18(16), 3737; https://doi.org/10.3390/ma18163737 - 10 Aug 2025
Viewed by 369
Abstract
Fracture toughness anisotropy is a key concern in IN718 components produced by Laser Powder Bed Fusion (LPBF), due to their strong crystallographic texture and characteristic lamellar microstructure. In this study, the effect of grain orientation on fracture toughness was evaluated by testing two [...] Read more.
Fracture toughness anisotropy is a key concern in IN718 components produced by Laser Powder Bed Fusion (LPBF), due to their strong crystallographic texture and characteristic lamellar microstructure. In this study, the effect of grain orientation on fracture toughness was evaluated by testing two LPBF IN718 builds with the same laser scanning strategy (R0), but with two different orientations: vertical (R0-0) and 45° inclined (R0-45) relative to the build direction. The mechanical response was assessed through compact tension (CT) tests following ASTM E399 and ASTM E1820 standards. Results show that the R0-45 specimens exhibited a fracture toughness nearly 2.5 times higher than R0-0 specimens. Detailed microstructural analysis, supported by EBSD and SEM, reveals that the higher toughness in the R0-45 orientation is linked to a combination of smaller effective grain size along the crack path, higher levels of geometrically necessary dislocations (GND), and increased kernel average misorientation (KAM), which collectively enhance plastic accommodation and crack-tip shielding. These findings support and reinforce the established understanding of the relationship between microstructure and anisotropic fracture behavior in LPBF IN718, facilitating its practical application in the design and orientation of additively manufactured components. Full article
Show Figures

Graphical abstract

Back to TopTop