Bioactive Compounds from the Deep-Sea-Derived Microorganisms 2.0

A special issue of Marine Drugs (ISSN 1660-3397). This special issue belongs to the section "Structural Studies on Marine Natural Products".

Deadline for manuscript submissions: 31 May 2024 | Viewed by 1928

Special Issue Editor


E-Mail Website
Guest Editor
Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
Interests: marine drugs; deep-sea-derived microorganisms; fungi; secondary metabolites; bioactive compounds
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Given the success of Volume I of this Special Issue, we are pleased to announce the launch of Volume II.

The first volume is available here: Bioactive Compounds from the Deep-Sea-Derived Microorganisms.

It is well-known that microorganisms are a source of a vast array of natural products. Unlike their terrestrial counterparts, marine microorganisms—especially those derived from the deep sea—live in extreme conditions (high pressure, high salinity, low oxygen, low/no light, etc.). Therefore, they can produce unique chemical structures with a broad spectrum of biological activities.

Volume II entitled "Bioactive Compounds from the Deep-Sea-Derived Microorganisms II" will continue to collect manuscripts that highlight the biological activities of the new secondary metabolites from deep-sea-derived microorganisms. Original research articles, reviews, and communications of the current knowledge in the field are welcome.

Prof. Dr. Xian-Wen Yang
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Marine Drugs is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • marine natural products
  • deep-sea
  • bioactivity
  • microorganisms
  • fungi
  • actinomycetes
  • compounds
  • secondary metabolites
  • OSMAC

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

19 pages, 2844 KiB  
Article
Antibacterial Polyketides from the Deep-Sea Cold-Seep-Derived Fungus Talaromyces sp. CS-258
by Zhenger Wu, Xiao-Ming Li, Sui-Qun Yang, Bin-Gui Wang and Xin Li
Mar. Drugs 2024, 22(5), 204; https://doi.org/10.3390/md22050204 - 28 Apr 2024
Viewed by 182
Abstract
Thirty-two fungal polyketide derivatives, including eleven new compounds, namely (3R,5′R)-5-hydroxytalaroflavone (1), talaroisochromenols A–C (3, 5, and 11), (8R,9R,10aR)-5-hydroxyaltenuene (13), (8R,9R,10aS [...] Read more.
Thirty-two fungal polyketide derivatives, including eleven new compounds, namely (3R,5′R)-5-hydroxytalaroflavone (1), talaroisochromenols A–C (3, 5, and 11), (8R,9R,10aR)-5-hydroxyaltenuene (13), (8R,9R,10aS)-5-hydroxyaltenuene (14), (8R,9S,10aR)-5-hydroxyaltenuene (15), nemanecins D and E (25 and 26), 2,5-dimethyl-8-iodochromone (27), and talarofurolactone A (29), together with one new naturally occurring but previously synthesized metabolite, 6-hydroxy-4-methoxycoumarin (28), were isolated and identified from the deep-sea cold-seep-derived fungus Talaromyces sp. CS-258. Among them, racemic ((±)-11) or epimeric (1315, 25, and 26) mixtures were successfully separated by chiral or gradient elution HPLC. Meanwhile, compound 27 represents a rarely reported naturally occurring iodinated compound. Their planar structures as well as absolute configurations were determined by extensive analysis via NMR, MS, single-crystal X-ray diffraction, Mosher’s method, and ECD or NMR calculation (with DP4+ probability analysis). Possible biosynthetic routes of some isolated compounds, which are related to chromone or isochromone biosynthetic pathways, were put forward. The biological analysis results revealed that compounds 7, 9, 10, 1822, 24, 30, and 31 showed broad-spectrum antibacterial activities against several human and aquatic pathogens with MIC ranges of 0.5–64 μg/mL. Full article
(This article belongs to the Special Issue Bioactive Compounds from the Deep-Sea-Derived Microorganisms 2.0)
Show Figures

Figure 1

14 pages, 2038 KiB  
Article
Marine-Fungi-Derived Gliotoxin Promotes Autophagy to Suppress Mycobacteria tuberculosis Infection in Macrophage
by Jun Fu, Xiaowei Luo, Miaoping Lin, Zimin Xiao, Lishan Huang, Jiaxi Wang, Yongyan Zhu, Yonghong Liu and Huaming Tao
Mar. Drugs 2023, 21(12), 616; https://doi.org/10.3390/md21120616 - 28 Nov 2023
Cited by 2 | Viewed by 1436
Abstract
The Mycobacterium tuberculosis (MTB) infection causes tuberculosis (TB) and has been a long-standing public-health threat. It is urgent that we discover novel antitubercular agents to manage the increased incidence of multidrug-resistant (MDR) or extensively drug-resistant (XDR) strains of MTB and tackle the adverse [...] Read more.
The Mycobacterium tuberculosis (MTB) infection causes tuberculosis (TB) and has been a long-standing public-health threat. It is urgent that we discover novel antitubercular agents to manage the increased incidence of multidrug-resistant (MDR) or extensively drug-resistant (XDR) strains of MTB and tackle the adverse effects of the first- and second-line antitubercular drugs. We previously found that gliotoxin (1), 12, 13-dihydroxy-fumitremorgin C (2), and helvolic acid (3) from the cultures of a deep-sea-derived fungus, Aspergillus sp. SCSIO Ind09F01, showed direct anti-TB effects. As macrophages represent the first line of the host defense system against a mycobacteria infection, here we showed that the gliotoxin exerted potent anti-tuberculosis effects in human THP-1-derived macrophages and mouse-macrophage-leukemia cell line RAW 264.7, using CFU assay and laser confocal scanning microscope analysis. Mechanistically, gliotoxin apparently increased the ratio of LC3-II/LC3-I and Atg5 expression, but did not influence macrophage polarization, IL-1β, TNF-a, IL-10 production upon MTB infection, or ROS generation. Further study revealed that 3-MA could suppress gliotoxin-promoted autophagy and restore gliotoxin-inhibited MTB infection, indicating that gliotoxin-inhibited MTB infection can be treated through autophagy in macrophages. Therefore, we propose that marine fungi-derived gliotoxin holds the promise for the development of novel drugs for TB therapy. Full article
(This article belongs to the Special Issue Bioactive Compounds from the Deep-Sea-Derived Microorganisms 2.0)
Show Figures

Figure 1

Back to TopTop