Genetic, Genomics and Big Data Analysis of the Interaction Between Pathogenic Fungi and Plants—Second Edition

A special issue of Journal of Fungi (ISSN 2309-608X). This special issue belongs to the section "Fungal Genomics, Genetics and Molecular Biology".

Deadline for manuscript submissions: 20 July 2025 | Viewed by 1193

Special Issue Editors


E-Mail Website
Guest Editor
State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
Interests: genomics; genetics; plant pathology; the application of artificial intelligence in crop breeding
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou 570228, China
Interests: bioinformatics; computational biology and system biology exploring plant-pathogen interaction; population genetic structure and evolutionary potential
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
1. Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha 410128, China
2. College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
Interests: molecular plant–microbe interactions
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

This Special Issue focuses on the genetic, genomics, and big data analysis of the interaction between pathogenic fungi and their hosts. The aim is to explore the intricate relationships between these organisms and uncover valuable insights that can aid in the development of effective strategies for disease management.

This Special Issue plans to bring together a series of research papers that delve into various aspects of this interaction. Starting from the fundamental data of genetics and multi-omics, including genomics, transcriptomics, proteomics, and metabolomics, the aim is to decipher the complex molecular networks at play during the interaction between the host and the pathogen. These analyses provide a holistic view of the complex biological processes and offer potential targets for disease control, considering both the pathogen and the host.

Overall, the main objective of this Special Issue is to provide a comprehensive overview of the genetic, genomics, and big data analysis pertaining to the interaction between pathogenic fungi and plants. The research presented in this Special Issue aims to enhance our understanding of the molecular mechanisms underlying pathogenicity, ultimately offering valuable insights for the development of innovative strategies to effectively combat fungal diseases in agriculture and promote plant health.

Prof. Dr. Houxiang Kang
Dr. Zhigang Li
Prof. Dr. Wei Li
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Journal of Fungi is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • genetic
  • genomics
  • big data analysis
  • pathogenic fungi
  • plant–pathogen interaction

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Related Special Issue

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

14 pages, 2745 KiB  
Article
Genomic Insights into Neofusicoccum laricinum: The Pathogen Behind Chinese Larch Shoot Blight
by Jialiang Pan, Zhijun Yu, Wenhao Dai, Chunhe Lv, Yifan Chen, Hong Sun, Jie Chen and Junxin Gao
J. Fungi 2025, 11(5), 399; https://doi.org/10.3390/jof11050399 - 21 May 2025
Viewed by 282
Abstract
Larch shoot blight, caused by the fungus Neofusicoccum laricinum, threatens larch (Larix spp.) forests across northeastern China, jeopardizing both timber productivity and ecological stability. This study aimed to investigate the genomic diversity, population structure, and potential adaptive mechanisms of N. laricinum [...] Read more.
Larch shoot blight, caused by the fungus Neofusicoccum laricinum, threatens larch (Larix spp.) forests across northeastern China, jeopardizing both timber productivity and ecological stability. This study aimed to investigate the genomic diversity, population structure, and potential adaptive mechanisms of N. laricinum across contrasting climatic regions. To achieve this, we conducted whole-genome resequencing of 23 N. laricinum isolates collected from three major provinces—Heilongjiang, Inner Mongolia, and Jilin—that represent distinct climatic zones ranging from cold-temperate to relatively warmer regions. We identified ~219.1 K genetic variants, offering a detailed portrait of the pathogen’s genomic diversity. Population structure analyses, including principal component analysis and phylogenetic tree, revealed clear genetic differentiation aligning with geographic origin and climate. Functional annotation (GO and KEGG) highlighted enrichment in metabolic, stress-response, and membrane transport pathways, suggesting potential adaptation to varied temperature regimes and environmental pressures. Moreover, region-specific variants—particularly missense and stop-gain mutations—were linked to genes involved in ATP binding, oxidoreductase activity, and cell division, underscoring the fungus’s capacity for rapid adaptation. Collectively, these findings fill a critical gap in the population genetics of N. laricinum and lay a foundation for future disease management strategies to larch shoot blight under changing climatic conditions. Full article
Show Figures

Figure 1

13 pages, 5005 KiB  
Article
FGSE02, a Novel Secreted Protein in Fusarium graminearum FG-12, Leads to Cell Death in Plant Tissues and Modulates Fungal Virulence
by Zhigang Hao, Lei Pan, Jiaqing Xu, Chengxuan Yu, Jianqiang Li and Laixin Luo
J. Fungi 2025, 11(5), 397; https://doi.org/10.3390/jof11050397 - 21 May 2025
Viewed by 441
Abstract
Fungal phytopathogens employ effector proteins and secondary metabolites to subvert host immunity. Effector proteins have attracted widespread interest in infection, especially for unknown, unreported genes. However, the type of protein remains much less explored. Here, we combined transcriptome analysis and functional validation to [...] Read more.
Fungal phytopathogens employ effector proteins and secondary metabolites to subvert host immunity. Effector proteins have attracted widespread interest in infection, especially for unknown, unreported genes. However, the type of protein remains much less explored. Here, we combined transcriptome analysis and functional validation to identify virulence-associated genes in Fusarium graminearum during fungi infection. A unique secreted protein, FGSE02, was significantly upregulated in the early infection stage. Proteomic characterization revealed that the protein contains a functional signal peptide but lacks known domains. The transient expression of FGSE02 in Nicotiana benthamiana induced rapid cell death, while gene knockout stains reduced fungal virulence without affecting growth. Our findings highlight FGSE02 as a key virulence factor, offering potential targets for disease control. Taken together, the results of this study identify a pathogenic factor and provide new insights into the development of green pesticides. Full article
Show Figures

Figure 1

Back to TopTop