Investigating the Potential Involvement of Glutathione S-Transferases in Defence Against Powdery Scab in Potato
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. The Preparation of S. subterranea Inoculum and the Root Infection Procedure
2.3. The Transcriptomics and Proteomics Experiments
2.4. Data Analysis
3. Results and Discussion
3.1. Identification of GSTs in the Transcriptomics and Proteomics Data
3.2. The Functional Analysis of the Identified GSTs
3.3. Chromosomal Localisation of GSTs in the Potato Genome
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
DE | Differentially expressed |
DTT | Dithiothreitol |
EDTA | Ethylenediaminetetraacetic acid |
FDR | False discovery rate |
GSTs | Glutathione S-transferases |
HPLC | High-performance liquid chromatography |
HS | Hoagland solution |
MS | Mass spectrometry |
QTL | Quantitative trait locus |
ROS | Reactive oxygen species |
References
- Amponsah, J.; Tegg, R.S.; Thangavel, T.; Wilson, C.R. Moments of weaknesses—Exploiting vulnerabilities between germination and encystment in the Phytomyxea. Biol. Rev. 2021, 96, 1603–1615. [Google Scholar] [CrossRef]
- Merz, U.; Falloon, R.E. Powdery scab of potato—Increased knowledge of pathogen biology and disease epidemiology for effective disease management. Potato Res. 2009, 52, 17–37. [Google Scholar] [CrossRef]
- Jones, R.; Harrison, B. The behaviour of potato mop-top virus in soil, and evidence for its transmission by Spongospora subterranea (Wallr.) Lagerh. Ann. Appl. Biol. 1969, 63, 1–17. [Google Scholar] [CrossRef]
- Strydom, R.; Wilson, C.; Tegg, R.; Balendres, M.; van der Waals, J. Advancements in Spongospora subterranea: Current knowledge, management strategies, and research gaps. Potato Res. 2024, 67, 1497–1537. [Google Scholar] [CrossRef]
- Falloon, R.E. Control of powdery scab of potato: Towards integrated disease management. Am. J. Potato Res. 2008, 85, 253–260. [Google Scholar] [CrossRef]
- Gullner, G.; Komives, T.; Király, L.; Schröder, P. Glutathione S-transferase enzymes in plant-pathogen interactions. Front. Plant Sci. 2018, 9, 1836. [Google Scholar] [CrossRef] [PubMed]
- Dorion, S.; Ouellet, J.C.; Rivoal, J. Glutathione metabolism in plants under stress: Beyond reactive oxygen species detoxification. Metabolites 2021, 11, 641. [Google Scholar] [CrossRef] [PubMed]
- Noctor, G.; Cohen, M.; Trémulot, L.; Châtel-Innocenti, G.; Van Breusegem, F.; Mhamdi, A. Glutathione: A key modulator of plant defence and metabolism through multiple mechanisms. J. Exp. Bot. 2024, 75, 4549–4572. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Jiang, H.; Cao, Q.; Li, Y.; Kuang, X.; Wu, Y.; Chai, Y.; Li, J.; Lu, K.; Wei, L. The glutathione S-transferase BnGSTU12 enhances the resistance of Brassica napus to Sclerotinia sclerotiorum through reactive oxygen species homeostasis and jasmonic acid signalling. Plant Physiol. Biochem. 2025, 219, 109446. [Google Scholar] [CrossRef]
- Lv, W.; Jiang, H.; Cao, Q.; Ren, H.; Wang, X.; Wang, Y. A tau class glutathione S-transferase in tea plant, CsGSTU45, facilitates tea plant susceptibility to Colletotrichum camelliae infection mediated by jasmonate signalling pathway. Plant J. 2024, 117, 1356–1376. [Google Scholar] [CrossRef]
- Islam, M.S.; Choudhury, M.; Majlish, A.-N.K.; Islam, T.; Ghosh, A. Comprehensive genome-wide analysis of glutathione S-transferase gene family in potato (Solanum tuberosum L.) and their expression profiling in various anatomical tissues and perturbation conditions. Gene 2018, 639, 149–162. [Google Scholar] [CrossRef]
- Shi, N.; Fan, Y.; Zhang, W.; Zhang, Z.; Pu, Z.; Li, Z.; Hu, L.; Bi, Z.; Yao, P.; Liu, Y. Genome-wide identification and drought-responsive functional analysis of the GST gene family in potato (Solanum tuberosum L.). Antioxidants 2025, 14, 239. [Google Scholar] [CrossRef]
- Li, W.; Wang, X.; Li, C.; Sun, J.; Li, S.; Peng, M. Dual species transcript profiling during the interaction between banana (Musa acuminata) and the fungal pathogen Fusarium oxysporum f. sp. cubense. BMC Genom. 2019, 20, 519. [Google Scholar] [CrossRef]
- Balotf, S.; Wilson, R.; Tegg, R.S.; Nichols, D.S.; Wilson, C.R. Shotgun proteomics as a powerful tool for the study of the proteomes of plants, their pathogens, and plant–pathogen interactions. Proteomes 2022, 10, 5. [Google Scholar] [CrossRef]
- Doni, F.; Miranti, M.; Mispan, M.S.; Mohamed, Z.; Uphoff, N. Multi-omics approaches for deciphering the microbial modulation of plants’ genetic potentials: What’s known and what’s next? Rhizosphere 2022, 24, 100613. [Google Scholar] [CrossRef]
- Balotf, S.; Wilson, R.; Nichols, D.S.; Tegg, R.S.; Wilson, C.R. Multi-omics reveals mechanisms of resistance to potato root infection by Spongospora subterranea. Sci. Rep. 2022, 12, 10804. [Google Scholar] [CrossRef]
- Falloon, R.E.; Genet, R.A.; Wallace, A.R.; Butler, R.C. Susceptibility of potato (Solanum tuberosum) cultivars to powdery scab (Spongospora subterranea), and relationships between tuber and root infection. Australas. Plant Pathol. 2003, 32, 377–385. [Google Scholar] [CrossRef]
- Maldonado, M.L.H.; Falloon, R.E.; Butler, R.C.; Conner, A.J.; Bulman, S.R. Spongospora subterranea root infection assessed in two potato cultivars differing in susceptibility to tuber powdery scab. Plant Pathol. 2013, 62, 1089–1096. [Google Scholar] [CrossRef]
- Balotf, S.; Wilson, R.; Tegg, R.S.; Nichols, D.S.; Wilson, C.R. Quantitative proteomics provides an insight into germination-related proteins in the obligate biotrophic plant pathogen Spongospora subterranea. Environ. Microbiol. Rep. 2021, 13, 521–532. [Google Scholar] [CrossRef] [PubMed]
- Hughes, C.S.; Moggridge, S.; Müller, T.; Sorensen, P.H.; Morin, G.B.; Krijgsveld, J. Single-pot, solid-phase-enhanced sample preparation for proteomics experiments. Nat. Protoc. 2019, 14, 68–85. [Google Scholar] [CrossRef] [PubMed]
- Balotf, S.; Wilson, R.; Tegg, R.S.; Nichols, D.S.; Wilson, C.R. In planta transcriptome and proteome profiles of Spongospora subterranea in resistant and susceptible host environments illuminates regulatory principles underlying host–pathogen interaction. Biology 2021, 10, 840. [Google Scholar] [CrossRef] [PubMed]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [PubMed]
- Hoopes, G.; Meng, X.; Hamilton, J.P.; Achakkagari, S.R.; Guesdes, F.D.A.F.; Bolger, M.E.; Coombs, J.J.; Esselink, D.; Kaiser, N.R.; Kodde, L.; et al. Phased, chromosome-scale genome assemblies of tetraploid potato reveal a complex genome, transcriptome, and predicted proteome landscape underpinning genetic diversity. Mol. Plant 2022, 15, 520–536. [Google Scholar] [CrossRef]
- Kim, D.; Paggi, J.M.; Park, C.; Bennett, C.; Salzberg, S.L. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat. Biotechnol. 2019, 37, 907–915. [Google Scholar] [CrossRef]
- Tyanova, S.; Temu, T.; Sinitcyn, P.; Carlson, A.; Hein, M.Y.; Geiger, T.; Mann, M.; Cox, J. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat. Methods 2016, 13, 731–740. [Google Scholar] [CrossRef]
- Ge, S.X.; Jung, D.; Yao, R. ShinyGO: A graphical gene-set enrichment tool for animals and plants. Bioinformatics 2020, 36, 2628–2629. [Google Scholar] [CrossRef]
- Dixon, D.P.; Lapthorn, A.; Edwards, R. Plant glutathione transferases. Genome Biol. 2002, 3, reviews3004.1. [Google Scholar] [CrossRef]
- Torres, M.A. ROS in biotic interactions. Physiol. Plant. 2010, 138, 414–429. [Google Scholar] [CrossRef]
- Camejo, D.; Guzmán-Cedeño, Á.; Moreno, A. Reactive oxygen species, essential molecules, during plant–pathogen interactions. Plant Physiol. Biochem. 2016, 103, 10–23. [Google Scholar] [CrossRef]
- Sharma, P.; Jha, A.B.; Dubey, R.S.; Pessarakli, M. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J. Bot. 2012, 2012, 217037. [Google Scholar] [CrossRef]
- Ding, F.; Wang, C.; Zhang, S.; Wang, M. A jasmonate-responsive glutathione S-transferase gene SlGSTU24 mitigates cold-induced oxidative stress in tomato plants. Sci. Hortic. 2022, 303, 111231. [Google Scholar] [CrossRef]
- Rai, G.K.; Kumar, P.; Choudhary, S.M.; Singh, H.; Adab, K.; Kosser, R.; Magotra, I.; Kumar, R.R.; Singh, M.; Sharma, R.; et al. Antioxidant potential of glutathione and crosstalk with phytohormones in enhancing abiotic stress tolerance in crop plants. Plants 2023, 12, 1133. [Google Scholar] [CrossRef]
- Gorshkov, V.; Tsers, I. Plant susceptible responses: The underestimated side of plant–pathogen interactions. Biol. Rev. 2022, 97, 45–66. [Google Scholar] [CrossRef] [PubMed]
- Coles, B.F.; Kadlubar, F.F. Detoxification of electrophilic compounds by glutathione S-transferase catalysis: Determinants of individual response to chemical carcinogens and chemotherapeutic drugs? Biofactors 2003, 17, 115–130. [Google Scholar] [CrossRef] [PubMed]
- Noctor, G.; Mhamdi, A.; Foyer, C.H. The roles of reactive oxygen metabolism in drought: Not so cut and dried. Plant Physiol. 2014, 164, 1636–1648. [Google Scholar] [CrossRef]
- Trovato, M.; Funck, D.; Forlani, G.; Okumoto, S.; Amir, R. Amino acids in plants: Regulation and functions in development and stress defense. Front. Plant Sci. 2021, 12, 772810. [Google Scholar] [CrossRef]
- Zeier, J. New insights into the regulation of plant immunity by amino acid metabolic pathways. Plant Cell Environ. 2013, 36, 2085–2103. [Google Scholar] [CrossRef]
- Young, N. QTL mapping and quantitative disease resistance in plants. Annu. Rev. Phytopathol. 1996, 34, 479–501. [Google Scholar] [CrossRef]
- Bhadauria, V.; Ramsay, L.; Bett, K.E.; Banniza, S. QTL mapping reveals genetic determinants of fungal disease resistance in the wild lentil species Lens ervoides. Sci. Rep. 2017, 7, 3231. [Google Scholar] [CrossRef]
- Rezaei, M.K.; Shobbar, Z.S.; Shahbazi, M.; Abedini, R.; Zare, S. Glutathione S-transferase (GST) family in barley: Identification of members, enzyme activity, and gene expression pattern. J. Plant Physiol. 2013, 170, 1277–1284. [Google Scholar] [CrossRef]
- Wei, L.; Zhu, Y.; Liu, R.; Zhang, A.; Zhu, M.; Xu, W.; Lin, A.; Lu, K.; Li, J. Genome wide identification and comparative analysis of glutathione transferases (GST) family genes in Brassica napus. Sci. Rep. 2019, 9, 9196. [Google Scholar] [CrossRef] [PubMed]
- Banday, Z.Z.; Nandi, A.K. Arabidopsis thaliana glutathione-s-transferase theta 2 interacts with RSI1/FLD to activate systemic acquired resistance. Mol. Plant Pathol. 2017, 18, 792–803. [Google Scholar] [CrossRef] [PubMed]
- Liao, W.; Ji, L.; Wang, J.; Chen, Z.; Ye, M.; Ma, H.; An, X. Identification of glutathione S-transferase genes responding to pathogen infestation in Populus tomentosa. Funct. Integr. Genom. 2014, 14, 517–529. [Google Scholar] [CrossRef]
- Han, Q.; Chen, R.; Yang, Y.; Cui, X.; Ge, F.; Chen, C.; Liu, D. A glutathione S-transferase gene from Lilium regale Wilson confers transgenic tobacco resistance to Fusarium oxysporum. Sci. Hortic. 2016, 198, 149–156. [Google Scholar] [CrossRef]
- do Carmo Santos, M.L.; Silva Santos, A.; Pereira Silva de Novais, D.; dos Santos Lopes, N.; Pirovani, C.P.; Micheli, F. The family of glutathione peroxidase proteins and their role against biotic stress in plants: A systematic review. Front. Plant Sci. 2025, 16, 1425880. [Google Scholar] [CrossRef]
- Ugalde, J.M.; Nath, M.; Wagner, S.; Meyer, A.J. Diversification of glutathione transferases in plants and their role in oxidative stress defense. Biol. Chem. 2025, 406, 199–218. [Google Scholar] [CrossRef]
- Maketon, C.; Fortuna, A.-M.; Okubara, P.A. Cultivar-dependent transcript accumulation in wheat roots colonised by Pseudomonas fluorescens Q8r1-96 wild type and mutant strains. Biol. Control 2012, 60, 216–224. [Google Scholar] [CrossRef]
FDR | nGenes | Fold Enrichment | Pathways |
---|---|---|---|
1.1 × 10−55 | 21 | 501.8 | Glutathione metabolic process |
9.2 × 10−51 | 21 | 301.9 | Amino acid metabolic process |
1.0 × 10−40 | 21 | 104.5 | Sulfur compound metabolic process |
8.0 × 10−34 | 21 | 49.1 | Peptide metabolic process |
4.5 × 10−32 | 21 | 40.2 | Cellular amide metabolic process |
2.5 × 10−25 | 22 | 15.7 | Response to chemical |
8.1 × 10−19 | 21 | 9.3 | Cellular nitrogen compound metabolic process |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balotf, S.; Wilson, R.; Wilson, C. Investigating the Potential Involvement of Glutathione S-Transferases in Defence Against Powdery Scab in Potato. J. Fungi 2025, 11, 654. https://doi.org/10.3390/jof11090654
Balotf S, Wilson R, Wilson C. Investigating the Potential Involvement of Glutathione S-Transferases in Defence Against Powdery Scab in Potato. Journal of Fungi. 2025; 11(9):654. https://doi.org/10.3390/jof11090654
Chicago/Turabian StyleBalotf, Sadegh, Richard Wilson, and Calum Wilson. 2025. "Investigating the Potential Involvement of Glutathione S-Transferases in Defence Against Powdery Scab in Potato" Journal of Fungi 11, no. 9: 654. https://doi.org/10.3390/jof11090654
APA StyleBalotf, S., Wilson, R., & Wilson, C. (2025). Investigating the Potential Involvement of Glutathione S-Transferases in Defence Against Powdery Scab in Potato. Journal of Fungi, 11(9), 654. https://doi.org/10.3390/jof11090654