ijms-logo

Journal Browser

Journal Browser

Biomechanics and Molecular Research on Glioblastoma: 2nd Edition

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Molecular Oncology".

Deadline for manuscript submissions: 31 July 2025 | Viewed by 236

Special Issue Editor


E-Mail Website
Guest Editor
Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
Interests: pharmacology; cancer; toxicology, neuroscience; phytotherapy; cell biology; molecular pharmacology
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Despite the considerable advancements in glioma research over the past decade, there remains an urgent and critical need for further investigations aimed at establishing innovative therapeutic and diagnostic targets. Understanding the intricate molecular mechanisms that play a pivotal role in glioma growth and progression, particularly within the supportive tumor microenvironment, is essential for advancing treatment approaches and improving patient outcomes. This Special Issue will place particular emphasis on glioblastoma multiforme (GBM), recognized as one of the most aggressive and lethal types of primary brain tumors. GBM accounts for a staggering 50% of all primary gliomas within the central nervous system, highlighting its significance in neuro-oncology. Recent research has revealed that the mechanical properties of the cellular environment, including the variable stiffness of cancer cells and their surroundings, are crucial factors that influence critical cellular behaviors such as migration, proliferation, and differentiation. These characteristics affect tumor development and may impact the efficacy of existing therapeutic interventions. Therefore, a comprehensive understanding of these biomechanical aspects is paramount for the pursuit of effective GBM treatments. We invite submissions that explore novel molecular pathways implicated in the growth and progression of GBM, offering fresh insights that could inform future therapeutic strategies. In addition, we are particularly interested in research presenting innovative molecules that demonstrate the ability to interfere with GBM growth and recurrence. Such findings are vital as they could lead to the identification of new, promising diagnostic and therapeutic targets, ultimately enhancing the clinical management of this devastating disease.

Dr. Lorenzo Corsi
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • GBM
  • molecular pathways
  • biomechanics
  • oncogene
  • cancer
  • microenvironment
  • drug targeting
  • diagnostic
  • immunotherapy

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Related Special Issue

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

11 pages, 1302 KiB  
Article
Iron Mediates Radiation-Induced Glioblastoma Cell Diffusion
by Stephenson Boakye Owusu, Akalanka B. Ekanayake, Alexei V. Tivanski and Michael S. Petronek
Int. J. Mol. Sci. 2025, 26(10), 4755; https://doi.org/10.3390/ijms26104755 - 16 May 2025
Viewed by 99
Abstract
Radiation therapy is a standard of care treatment for patients with glioblastoma. However, patients’ survival rate is dismal, with nearly all patients experiencing disease progression after treatment. Enriched iron content associated with increased transferrin receptor (TfR) expression is an indicator of poor glioblastoma [...] Read more.
Radiation therapy is a standard of care treatment for patients with glioblastoma. However, patients’ survival rate is dismal, with nearly all patients experiencing disease progression after treatment. Enriched iron content associated with increased transferrin receptor (TfR) expression is an indicator of poor glioblastoma patient outcomes; however, the underlying contributions to tumor progression remain elusive. The goal of this present study is to understand how iron metabolism in glioma contributes to radiation-induced glioblastoma cell motility. U251 and a doxycycline-inducible ferritin heavy chain overexpressing U251 (U251 FtH+) cell line were used. For in vitro studies, cells were irradiated with 2 Gy using a 37Cs source, and after 72 h, atomic force microscopy (AFM) nanoindentation was employed to assess changes in cell stiffness following irradiation. Cell motility was studied using temporal confocal microscopy. For in vivo studies, U251 cells were grown in the rear flanks of female nude athymic mice, and the tumor was irradiated with five fractions of 2 Gy (10 Gy). The tumors were then imaged using a GE 7T small animal MRI to assess changes in T2* MRI, and colorimetric analysis of labile iron was performed using ferrozine. Following irradiation, a biomechanical shift characterized by decreased cell stiffness along with increased cell motility occurred in U251 cells, which corresponded to increased TfR expression. FtH overexpression completely reversed the enhanced cell motility following irradiation. Irradiation of U251 tumors induced the same iron metabolic shift. Interestingly, the change in labile iron in U251 tumors corresponded with an increase in T2* relaxation times, suggesting that T2* mapping may serve as a surrogate marker for assessing radiation-induced changes in iron metabolism. Full article
(This article belongs to the Special Issue Biomechanics and Molecular Research on Glioblastoma: 2nd Edition)
Show Figures

Figure 1

Back to TopTop