ijms-logo

Journal Browser

Journal Browser

Molecular Mechanisms of Plant Extracts in the Prevention and Treatment of Obesity

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Bioactives and Nutraceuticals".

Deadline for manuscript submissions: closed (30 April 2025) | Viewed by 790

Special Issue Editor


E-Mail Website
Guest Editor
Department of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
Interests: tumor microenvironment; obesity; cell signaling
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Obesity is a complex, chronic disease characterized by the dysregulation of lipid homeostasis and dysfunction of adipose tissue. It is closely linked to non-communicable diseases (NCDs) such as insulin resistance, type 2 diabetes, dyslipidemia, non-alcoholic fatty liver disease (NAFLD), and cardiovascular disease (CVD). Given the rising global prevalence of obesity, there is an increasing need to investigate the molecular mechanisms that regulate lipid homeostasis and the dysfunction of adipose tissue associated with obesity and related metabolic disorders. Recently, plant-derived compounds have emerged as promising sources of anti-obesity agents. These compounds can inhibit adipocyte differentiation and lipogenesis or promote lipolysis to reduce lipid accumulation. Therefore, therapeutic approaches using plant extracts that target these molecular mechanisms may offer promising options for the prevention and treatment of obesity and related metabolic diseases.

Prof. Dr. Ju-Ock Nam
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • obesity
  • plant-derived compounds
  • adipocyte differentiation
  • lipogenesis
  • lipolysis

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

16 pages, 3474 KiB  
Article
Rubia akane Nakai Fruit Extract Improves Obesity and Insulin Sensitivity in 3T3-L1 Adipocytes and High-Fat Diet-Induced Obese Mice
by Juhye Park, Eunbi Lee and Ju-Ock Nam
Int. J. Mol. Sci. 2025, 26(5), 1833; https://doi.org/10.3390/ijms26051833 - 20 Feb 2025
Viewed by 597
Abstract
A rise in obesity during the COVID-19 pandemic has spurred the development of safe and effective natural anti-obesity agents. In this study, we propose Rubia akane Nakai fruit extract (RFE) as a potential natural product-based anti-obesity agent. R. akane Nakai is a plant [...] Read more.
A rise in obesity during the COVID-19 pandemic has spurred the development of safe and effective natural anti-obesity agents. In this study, we propose Rubia akane Nakai fruit extract (RFE) as a potential natural product-based anti-obesity agent. R. akane Nakai is a plant of the Rubiaceae family that grows throughout Republic of Korea. Its roots have long been used medicinally and are known for various bioactivities, but the fruit’s bioactivities are unexplored. We investigated the anti-obesity effects of RFE using 3T3-L1 adipocytes and high-fat diet-induced obese mice. In 3T3-L1 adipocytes, RFE inhibited adipogenic differentiation and lipogenesis by downregulating PPARγ (peroxisome proliferator-activated receptor γ), C/EBPα (CCAAT enhancer-binding protein α), and SREBP-1 (sterol regulatory element-binding protein 1) through AMPK (AMP-activated protein kinase) activation and by delaying the initiation of MCE (mitotic clonal expansion), which is essential for early adipogenesis. At the in vivo level, RFE improved the phenotypes of obesity and insulin resistance. In white adipose tissue, RFE not only suppressed adipogenic differentiation and lipogenesis through AMPK activation but also improved insulin sensitivity by upregulating basal GLUT4 (glucose transporter type 4) expression. Therefore, this study advances RFE as a potential natural treatment for obesity and insulin resistance. Full article
Show Figures

Figure 1

Back to TopTop