ijms-logo

Journal Browser

Journal Browser

Molecular Advances in Anti-bacterial Polymers

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Macromolecules".

Deadline for manuscript submissions: closed (20 February 2025) | Viewed by 4005

Special Issue Editor


E-Mail Website
Guest Editor
Formerly at Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
Interests: sustainability; food waste; food safety; climate change; nanotechnology; polymers; microplastics
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Welcome to our Special Issue focused on molecular advances in antibacterial polymers. Antimicrobial polymers are important macromolecular structures that could kill pathogenic microorganisms and inhibit their growth activity. They are widely studied in several research areas such as food technology, food packaging, textiles, agriculture and biomedicine. The use of antibacterial polymers will help reduce the amount and frequency of antibiotic use.

Antimicrobial polymers are generally categorized into two types based on how they impart antimicrobial activity. The first are polymers with inherent antimicrobial properties that do not require modification to induce antimicrobial activity. The other type requires modification to achieve antimicrobial activity and can be differentiated by the type of modification. Polymers can be chemically modified to induce antimicrobial activity or used as scaffolds for the addition of organic or inorganic compounds.

The purpose of this Special Issue is to supply a platform for research on the development of antimicrobial polymer exploration and evaluation, starting from their synthesis to their biological evaluation, mechanistic studies and modifications.

Dr. Yagmur Yegin
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • anti-bacterial polymers
  • polymer synthesis
  • biological evaluation
  • mechanistic studies
  • application of biocide polymers
  • food packaging
  • biocide polymers coatings and surfaces
  • antibiofilm
  • foodborne pathogens
  • smart delivery systems

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

18 pages, 5239 KiB  
Article
Intrinsic Antibacterial Urushiol-Based Benzoxazine Polymer Coating for Marine Antifouling Applications
by Nuo Chen, Jide Zhu, Xinrong Chen, Fengcai Lin, Xiaoxiao Zheng, Guocai Zheng, Qi Lin, Jipeng Chen and Yanlian Xu
Int. J. Mol. Sci. 2025, 26(9), 4118; https://doi.org/10.3390/ijms26094118 - 26 Apr 2025
Viewed by 145
Abstract
Marine antifouling coatings that rely on the release of antifouling agents are the most prevalent and effective strategy for combating fouling. However, the environmental concerns arising from the widespread discharge of these agents into marine ecosystems cannot be overlooked. An innovative and promising [...] Read more.
Marine antifouling coatings that rely on the release of antifouling agents are the most prevalent and effective strategy for combating fouling. However, the environmental concerns arising from the widespread discharge of these agents into marine ecosystems cannot be overlooked. An innovative and promising alternative involves incorporating antimicrobial groups into polymers to create coatings endowed with intrinsic antimicrobial properties. In this study, we reported an urushiol-based benzoxazine (URB) monomer, synthesized from natural urushiol and antibacterial rosin amine. The URB monomer was subsequently polymerized through thermal curing ring-opening polymerization, resulting in the formation of a urushiol-based benzoxazine polymer (URHP) coating with inherent antimicrobial properties. The surface of the URHP coating is smooth, flat, and non-permeable. Contact angle and surface energy measurements confirm that the URHP coating is hydrophobic with low surface energy. In the absence of antimicrobial agent release, the intrinsic properties of the URHP coating can effectively kill or repel fouling organisms. Furthermore, with bare glass slides serving as the control sample, the coating demonstrates outstanding anti-adhesion capabilities against four types of bacteria (E. coli, S. aureus, V. alginolyticus, and Bacillus sp.), and three marine microalgae (N. closterium, P. tricornutum, and D. zhan-jiangensis), proving its efficacy in preventing fouling organisms from settling and adhering to the surface. Thus, the combined antibacterial and anti-adhesion properties endow the URHP coating with superior antifouling performance. This non-release antifouling coating represents a green and environmentally sustainable strategy for antifouling. Full article
(This article belongs to the Special Issue Molecular Advances in Anti-bacterial Polymers)
Show Figures

Figure 1

18 pages, 5589 KiB  
Article
Novel Bioactive Resin Coating with Calcium Phosphate Nanoparticles for Antibacterial and Remineralization Abilities to Combat Tooth Root Caries
by Nader Almutairi, Abdullah Alhussein, Mohammad Alenizy, Ibrahim Ba-Armah, Heba Alqarni, Thomas W. Oates, Radi Masri, Gary D. Hack, Jirun Sun, Michael D. Weir and Hockin H. K. Xu
Int. J. Mol. Sci. 2025, 26(6), 2490; https://doi.org/10.3390/ijms26062490 - 11 Mar 2025
Viewed by 553
Abstract
Tooth root caries account for 10.1% of all dental caries in the USA. This study developed a multifunctional resin coating with calcium (Ca) and phosphate (P) ion release and antibacterial properties to combat root caries. The effects of nano-sized amorphous calcium phosphate (NACP) [...] Read more.
Tooth root caries account for 10.1% of all dental caries in the USA. This study developed a multifunctional resin coating with calcium (Ca) and phosphate (P) ion release and antibacterial properties to combat root caries. The effects of nano-sized amorphous calcium phosphate (NACP) and dimethylaminohexadecyl methacrylate (DMAHDM) on mechanical, physical, and antibacterial properties against Streptococcus mutans, and cytotoxicity on dental pulp stem cells and gingival fibroblasts were evaluated. A coating resin combining urethane dimethacrylate (UDMA), triethylene glycol divinylbenzyl ether (TEGDVBE), DMAHDM, and NACP was synthesized and compared with Seal&Protect and Vanish XT. Experimental groups (UV + 5% DMAHDM + 10%, 15%, and 20% NACP) showed flexural strength (70.9 ± 8.0 to 81.1 ± 6.0) MPa, significantly higher than Seal&Protect (48.2 ± 7.2) MPa (p < 0.05) and comparable to Vanish XT (70.2 ± 13.6) MPa, (p > 0.05). Elastic modulus (2.2 to 3.3) GPa was lower than Vanish XT (9.4 ± 1.1) GPa (p < 0.05). Experimental groups showed an 8 log CFU reduction, 96% reduction in metabolic activity and 87% in lactic acid production, and increased Ca (1.25 ± 0.03) mmol/L and P (0.8 ± 0.001) mmol/L release over 35 days. Cytotoxicity for experimental groups against dental pulp stem cells and human gingival fibroblast was low and matched those of commercial controls already used in clinic. The resin demonstrated potent antibacterial properties, high ion release, low cytotoxicity, and maintained physical and mechanical integrity, offering potential to prevent root caries formation and progression. Full article
(This article belongs to the Special Issue Molecular Advances in Anti-bacterial Polymers)
Show Figures

Figure 1

22 pages, 9404 KiB  
Article
Lignin-Based Coatings: A Sustainable Approach to Produce Antibacterial Textiles
by Sílvia Ferreira, Vânia Pais, João Bessa, Fernando Cunha, Laura de Araújo Hsia, Estevão Frigini Mai, Giullia Sborchia and Raul Fangueiro
Int. J. Mol. Sci. 2025, 26(3), 1217; https://doi.org/10.3390/ijms26031217 - 30 Jan 2025
Viewed by 933
Abstract
The growing interest in developing antibacterial textiles using natural functional agents is largely driven by their sustainable and eco-friendly attributes. Lignin, a highly available biopolymer with a polyphenolic structure, has drawn attention due to its potential as a bioactive antibacterial agent. However, its [...] Read more.
The growing interest in developing antibacterial textiles using natural functional agents is largely driven by their sustainable and eco-friendly attributes. Lignin, a highly available biopolymer with a polyphenolic structure, has drawn attention due to its potential as a bioactive antibacterial agent. However, its inherent heterogeneity poses challenges, particularly regarding its antibacterial efficacy. In this study, unmodified kraft lignin sourced directly from the paper industry was applied to cotton and polyester fabrics, using a knife-coating technique with varying concentrations (0%, 5%, 10%, 20%, and 30% w/v), to assess its potential as an antibacterial coating. The lignin-coated fabrics demonstrated hydrophobic properties, with water contact angles reaching up to 110.3° and 112.6°, for polyester and cotton fabrics, respectively, alongside significantly reduced air permeability and water vapor permeability indexes, regardless of lignin concentration. Antibacterial evaluations also revealed that lignin-based coatings, with at least 10% w/v concentration, allowed cotton fabrics with a bacterial reduction surpassing 96%, according to ASTM E2149-2013, particularly for Gram-positive S. aureus, highlighting the potential of lignin as an antibacterial agent. Despite their limited resistance to domestic washing, the lignin-coated fabrics demonstrated exceptional stability under hot-pressing conditions. Therefore, this stability, combined with the hydrophobic and antibacterial properties observed, particularly on coated cotton fabrics, highlights the potential application of lignin-based coatings for the development of antibacterial and water-repellent textiles, with these coatings being particularly suited for single-use applications or scenarios where washing resistance is not a requirement. This approach offers a sustainable and efficient method for producing functional textiles while enabling value-added utilization of lignin, showcasing its potential as an eco-friendly solution in textile functionalization. Full article
(This article belongs to the Special Issue Molecular Advances in Anti-bacterial Polymers)
Show Figures

Figure 1

8 pages, 2058 KiB  
Communication
Antimicrobial Activity of Positively Charged Oligopeptides with Theoretical High α-Helix Content against Cutibacterium acnes
by Miyako Yoshida, Saki Hayashi, Tamami Haraguchi, Momoka Ito, Yoshiro Hatanaka, Miki Yoshii, Hiroaki Tatsuoka, Shigemitsu Tanaka and Toshihiro Nagao
Int. J. Mol. Sci. 2024, 25(13), 7445; https://doi.org/10.3390/ijms25137445 - 6 Jul 2024
Viewed by 1409
Abstract
Cutibacterium acnes is abundant and commonly exists as a superficial bacteria on human skin. Recently, the resistance of C. acnes to antimicrobial agents has become a serious concern, necessitating the development of alternative pharmaceutical products with antimicrobial activity against C. acnes. To [...] Read more.
Cutibacterium acnes is abundant and commonly exists as a superficial bacteria on human skin. Recently, the resistance of C. acnes to antimicrobial agents has become a serious concern, necessitating the development of alternative pharmaceutical products with antimicrobial activity against C. acnes. To address this need, we evaluated the antimicrobial activity of CKR-13—a mutant oligopeptide of FK-13 with increased net charge and theoretical α-helical content—against C. acnes in modified Gifu Anaerobic Medium broth by determining the minimum inhibitory concentration (MIC). CKR-13 exerted greater antimicrobial activity against C. acnes than FK-13 in the broth at pH 7.0. The antimicrobial activity of CKR-13 with RXM against C. albicans was pH-dependent. The ionization of CKR-13 and pH-dependent growth delay of C. albicans was suggested to be associated with the increase in CKR-13 antimicrobial activity. Full article
(This article belongs to the Special Issue Molecular Advances in Anti-bacterial Polymers)
Show Figures

Figure 1

Back to TopTop