ijms-logo

Journal Browser

Journal Browser

Advances of Organic Synthesis in Drug Discovery

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Molecular Pharmacology".

Deadline for manuscript submissions: 31 May 2025 | Viewed by 723

Special Issue Editor


E-Mail Website
Guest Editor
Department of Chemistry, Alexandru Ioan Cuza University of Iasi, No. 11 Carol I Blvd., 700506 Iasi, Romania
Interests: organic synthesis; synthetic drugs; flavonoids; sulfur compounds

Special Issue Information

Dear Colleagues,

Although the advances in drug discovery made in past decades are very remarkable and very significant, organic synthesis approaches remain a limiting factor in drug-development projects. The need to further expand synthetic methodologies and develop new ones regarding drug design is becoming more pressing. Notable synthesis challenges arise due to the fact that many drug molecules include amines and N-heterocycles, along with unprotected polar groups. There is also a demand for new reactions that allow unconventional disconnections, photoredox chemistry, new catalysts for cross-coupling reactions, more C–H bond activation, and late-stage functionalization, as well as stereoselectively substituted heterocyclic ring synthesis and C–X or C–C bond creation towards the preparation of drug-like molecules. Given the recent technological advances, of great interest are the syntheses that work well with biomacromolecules, while new technologies for synthesis planning could significantly speed up the drug-development process. Additionally, partnerships between industry and academia are very important and valuable in creating innovative methods to design new molecules that could be good candidates for future drugs. In this Special Issue, we are pleased to invite original manuscripts focusing on advances in organic synthesis in drug discovery.

Dr. Laura Gabriela Sârbu
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • organic synthesis
  • drug design
  • heterocyclic chemistry
  • functionalization

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

27 pages, 13384 KiB  
Article
4-Substituted Pyridine-3-Sulfonamides as Carbonic Anhydrase Inhibitors Modified by Click Tailing: Synthesis, Activity, and Docking Studies
by Krzysztof Szafrański, Jarosław Sławiński, Anna Kawiak, Jarosław Chojnacki, Michał Kosno, Andrea Ammara and Claudiu T. Supuran
Int. J. Mol. Sci. 2025, 26(8), 3817; https://doi.org/10.3390/ijms26083817 - 17 Apr 2025
Viewed by 197
Abstract
In the search for new selective inhibitors of human carbonic anhydrase (hCA), particularly the cancer-associated isoforms hCA IX and hCA XII, a series of 4-substituted pyridine-3-sulfonamides was synthesized using the “click” CuAAC reaction, proven by X-ray crystallography, and evaluated for their inhibitory activity [...] Read more.
In the search for new selective inhibitors of human carbonic anhydrase (hCA), particularly the cancer-associated isoforms hCA IX and hCA XII, a series of 4-substituted pyridine-3-sulfonamides was synthesized using the “click” CuAAC reaction, proven by X-ray crystallography, and evaluated for their inhibitory activity against hCA I, hCA II, hCA IX, and hCA XII. Additional molecular docking studies and cytostatic activity assays on three cancer cell lines were conducted. The compounds exhibited a broad range of inhibitory activity, with KI reaching 271 nM for hCA II, 137 nM for hCA IX, and 91 nM for hCA XII. Notably, compound 4 demonstrated up to 5.9-fold selectivity toward the cancer-associated hCA IX over the ubiquitous hCA II, while compound 6 exhibited a remarkable 23.3-fold selectivity between transmembrane isoforms hCA IX and hCA XII. Molecular docking studies have shown the possibility of selective interaction with the hydrophilic or lipophilic half of the active site, what results from the adjacent (3,4) position of the “tail” in relation to the sulfonamide group. Full article
(This article belongs to the Special Issue Advances of Organic Synthesis in Drug Discovery)
Show Figures

Graphical abstract

20 pages, 4100 KiB  
Article
Ultrasound-Assisted Synthesis of Substituted Chalcone-Linked 1,2,3-Triazole Derivatives as Antiproliferative Agents: In Vitro Antitumor Activity and Molecular Docking Studies
by Manuel Cáceres, Víctor Kesternich, Marcia Pérez-Fehrmann, Mariña Castroagudin, Ronald Nelson, Víctor Quezada, Philippe Christen, Alejandro Castro-Alvarez and Juan G. Cárcamo
Int. J. Mol. Sci. 2025, 26(7), 3389; https://doi.org/10.3390/ijms26073389 - 4 Apr 2025
Viewed by 313
Abstract
The synthesis of (E)-1-(1-benzyl-5-methyl-1H-1,2,3-triazol-4-yl)-3-phenyl-2-propen-1-one derivatives was carried out in two steps, using benzylic chloride derivatives as starting material. The structural determination of intermediates and final products was performed by spectroscopic methods: infrared spectroscopy, nuclear magnetic resonance spectroscopy and mass [...] Read more.
The synthesis of (E)-1-(1-benzyl-5-methyl-1H-1,2,3-triazol-4-yl)-3-phenyl-2-propen-1-one derivatives was carried out in two steps, using benzylic chloride derivatives as starting material. The structural determination of intermediates and final products was performed by spectroscopic methods: infrared spectroscopy, nuclear magnetic resonance spectroscopy and mass spectrometry (IR, NMR, and MS). In vitro evaluation of cytotoxic activity on adherent and non-adherent cells showed that triazole chalcones exhibited significant activity against three of the five cell lines studied: non-Hodgkin lymphoma U937, glioblastoma multiform tumor T98G, and gallbladder cancer cells Gb-d1. In contrast, the cytotoxic activity observed for cervical cancer HeLa and gallbladder adenocarcinoma G-415 was considerably lower. Additionally, in the cell lines where activity was observed, some compounds demonstrated an In vitro inhibitory effect superior to that of the control, paclitaxel. Molecular docking studies revealed specific interactions between the synthesized ligands and therapeutic targets in various cell lines. In U937 cells, compounds 4a and 4c exhibited significant inhibition of vascular endothelial growth factor receptor (VEGFR) kinase, correlating with their biological activity. This effect was attributed to favorable interactions with key residues in the binding site. In T98G cells, compounds 4r and 4w showed affinity for transglutaminase 2 (TG2) protein, driven by their ability to form hydrophobic interactions. In Gb-d1 cells, compounds 4l and 4p exhibited favorable interactions with mitogen-activated protein kinase (MEK) protein, similar to those observed with the known inhibitor selumetinib. In HeLa cells, compounds 4h and 4g showed activity against dihydrofolate reductase (DHFR) protein, driven by hydrogen bonding interactions and favorable aromatic ring orientations. On the other hand, compounds 4b and 4t exhibited no activity, likely due to unfavorable interactions related to halogen substitutions in the aromatic rings. Full article
(This article belongs to the Special Issue Advances of Organic Synthesis in Drug Discovery)
Show Figures

Figure 1

Back to TopTop