ijms-logo

Journal Browser

Journal Browser

Cotton Molecular Genomics and Genetics (Third Edition)

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Molecular Plant Sciences".

Deadline for manuscript submissions: closed (30 May 2025) | Viewed by 809

Special Issue Editor


E-Mail Website
Guest Editor
Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, China
Interests: cotton genetics; genomics; molecular breeding; genetic improvement
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Cotton (Gossypium spp.) is not only the most important fiber crop for the global textile industry, but it also serves as a model system to study plant cell growth and development because a cotton fiber cell is the longest currently known cell in the plant kingdom. During the past few decades, cotton researchers have devoted tremendous efforts to developing molecular, genetic, and genomic tools that are being used to better understand the biology of cotton plants. High-quality genome assemblies have been published. New technologies, such as CRISPR gene editing, are being exploited for varietal improvement. With many accomplishments achieved and more exciting developments on the horizon, a Special Issue on “Cotton Molecular Genomics and Genetics” is warranted.

Papers submitted to this Special Issue must report novel results in the areas of molecular genetics and genomics of cotton. More specifically, this Special Issue will cover a selection of original research and review articles focusing on gene identification and functionality analysis, genomic prediction and selection, trait QTL analysis, application of omics and gene-editing tools to the enhancement of cotton breeding, and new methods/strategies to conduct genetic and genomic research. In addition, databases related to the subject of interest are also welcome.

Prof. Dr. Jie Sun
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • cotton
  • biotic or abiotic stress
  • disease resistance
  • fiber yield and quality
  • gene editing
  • gene identification and function validation
  • genome-wide association study
  • QTL identification

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

18 pages, 4800 KiB  
Article
Genome-Wide Identification and Classification of Arabinogalactan Proteins Gene Family in Gossypium Species and GhAGP50 Increases Numbers of Epidermal Hairs in Arabidopsis
by Renhui Wei, Ziru Guo, Zheng Yang, Yanpeng Zhao, Haoliang Yan, Muhammad Tehseen Azhar, Yamin Zhang, Gangling Li, Jingtao Pan, Aiying Liu, Wankui Gong, Qun Ge, Juwu Gong, Youlu Yuan and Haihong Shang
Int. J. Mol. Sci. 2025, 26(9), 4159; https://doi.org/10.3390/ijms26094159 - 27 Apr 2025
Viewed by 482
Abstract
Arabinogalactan proteins (AGPs) constitute a diverse class of hydroxyproline-rich glycoproteins implicated in various aspects of plant growth and development. However, their functional characterization in cotton (Gossypium spp.) remains limited. As a globally significant economic crop, cotton serves as the primary source of [...] Read more.
Arabinogalactan proteins (AGPs) constitute a diverse class of hydroxyproline-rich glycoproteins implicated in various aspects of plant growth and development. However, their functional characterization in cotton (Gossypium spp.) remains limited. As a globally significant economic crop, cotton serves as the primary source of natural fiber, making it essential to understand the genetic mechanisms underlying its growth and development. This study aims to perform a comprehensive genome-wide identification and characterization of the AGP gene family in Gossypium spp., with a particular focus on elucidating their structural features, evolutionary relationships, and functional roles. A genome-wide analysis was conducted to identify AGP genes in Gossypium spp., followed by classification into distinct subfamilies based on sequence characteristics. Protein motif composition, gene structure, and phylogenetic relationships were examined to infer potential functional diversification. Subcellular localization of a key candidate gene, GhAGP50, was determined using fluorescent protein tagging, while gene expression patterns were assessed through β-glucuronidase (GUS) reporter assays. Additionally, hormonal regulation of GhAGP50 was investigated via treatments with methyl jasmonate (MeJA), abscisic acid (ABA), indole-3-acetic acid (IAA), and gibberellin (GA). A total of 220 AGP genes were identified in Gossypium spp., comprising 19 classical AGPs, 28 lysine-rich AGPs, 55 AG peptides, and 118 fasciclin-like AGPs (FLAs). Structural and functional analyses revealed significant variation in gene organization and conserved motifs across subfamilies. Functional characterization of GhAGP50, an ortholog of AGP18 in Arabidopsis thaliana, demonstrated its role in promoting epidermal hair formation in leaves and stalks. Subcellular localization studies indicated that GhAGP50 is targeted to the nucleus and plasma membrane. GUS staining assays revealed broad expression across multiple tissues, including leaves, inflorescences, roots, and stems. Furthermore, hormonal treatment experiments showed that GhAGP50 expression is modulated by MeJA, ABA, IAA, and GA, suggesting its involvement in hormone-mediated developmental processes. This study presents a comprehensive genome-wide analysis of the AGP gene family in cotton, providing new insights into their structural diversity and functional significance. The identification and characterization of GhAGP50 highlight its potential role in epidermal hair formation and hormonal regulation, contributing to a deeper understanding of AGP functions in cotton development. These findings offer a valuable genetic resource for future research aimed at improving cotton growth and fiber quality through targeted genetic manipulation. Full article
(This article belongs to the Special Issue Cotton Molecular Genomics and Genetics (Third Edition))
Show Figures

Figure 1

Back to TopTop