Special Issue "Coronavirus and Influenza Epidemiology. Coronavirus Vaccine Studies and Influenza Vaccine Effectiveness. New Challenges in Analysis and Reporting"

A special issue of International Journal of Environmental Research and Public Health (ISSN 1660-4601). This special issue belongs to the section "Infectious Disease Epidemiology".

Deadline for manuscript submissions: closed (31 December 2020).

Special Issue Editors

Dr. Joan Puig-Barberà
Website
Guest Editor
Vaccine Research Area, FISABIO, Valencia, Spain
Interests: hospitalization; influenza; human, vaccination; community-acquired infections; epidemiology; immunology, virology; prevention & control; respiratory syncytial viruses; population surveillance; reverse transcriptase polymerase chain reaction
Dr. George Kassianos
Website
Guest Editor
1. National Immunisation Lead Royal College of General Practitioners, London, UK
2. President The British Global & Travel Health Association, Bath, UK
Interests: all matters of primary care; vaccinations & immunisations; travel medicine

Special Issue Information

Dear Colleagues,

In the coming years, we will face challenges in applying new methods to estimate and report acute respiratory viruses epidemiology and vaccine effectiveness to provide robust estimates that better answer the information needs of policymakers, public health authorities, clinicians, patients and the general public, the pharma industry, and regulatory bodies.

We aim to improve the understanding of new approaches in research management, the gathering of clinic-epidemiological data, integration of molecular information, and reporting of results.

The scope of this Special Issue will cover the analysis and reporting of coronavirus (SARS-CoV-2) and influenza epidemiology, and vaccine efficacy and effectiveness in the next years of the first half of the twenty-first century.

We look for manuscripts that explore the challenges posed by the use of new data sources, big data, and real-world data analysis; the leadership of independent institutions, the private sector and public-private partnerships in promoting, directing, and publishing new knowledge and insights on influenza epidemiology and vaccine effectiveness; the role of molecular epidemiology and, finally, causal inference coming from observational data by counterfactual analysis.

Dr. Joan Puig-Barberà
Dr. George Kassianos
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Environmental Research and Public Health is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2300 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • COVID-19
  • betacoronavirus
  • severe acute respiratory syndrome coronavirus 2
  • comorbidity
  • prevalence
  • epidemiology
  • immunology
  • epidemics
  • pandemics
  • host-pathogen interactions
  • antiviral agents/therapeutic use
  • clinical laboratory techniques/methods
  • diagnosis, prevention, control, and therapy
  • viral vaccines
  • causality clinical trials as topic/methods* confounding factors, epidemiologic
  • effect modifier, epidemiologic* egg adaptation
  • epidemiologic research design*: epidemiology
  • influenza
  • pragmatic trials
  • propensity score analysis
  • relative vaccine effectiveness
  • repeat vaccination
  • research design
  • sequencing
  • serologic assays
  • surveillance
  • test-negative design
  • vaccination
  • vaccine effectiveness
  • vaccine response
  • virus interference

Published Papers (6 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Open AccessArticle
No Evidence of SARS-CoV-2 Circulation in Rome (Italy) during the Pre-Pandemic Period: Results of a Retrospective Surveillance
Int. J. Environ. Res. Public Health 2020, 17(22), 8461; https://doi.org/10.3390/ijerph17228461 - 16 Nov 2020
Abstract
In March 2020, the World Health Organization (WHO) declared that the COVID-19 outbreak recorded over the previous months could be characterized as a pandemic. The first known Italian SARS-CoV-2 positive case was reported on 21 February. In some countries, cases of suspected “COVID-19-like [...] Read more.
In March 2020, the World Health Organization (WHO) declared that the COVID-19 outbreak recorded over the previous months could be characterized as a pandemic. The first known Italian SARS-CoV-2 positive case was reported on 21 February. In some countries, cases of suspected “COVID-19-like pneumonia” had been reported earlier than those officially accepted by health authorities. This has led many investigators to check preserved biological or environmental samples to see whether the virus was detectable on dates prior to those officially stated. With regard to Italy, the results of a microbiological screening in sewage samples collected between the end of February and the beginning of April 2020 from wastewaters in Milan (Northern Italy) and Rome (Central Italy) showed presence of SARS-CoV-2. In the present study, we evaluated, by means of a standardized diagnostic method, the SARS-CoV-2 infection prevalence amongst patients affected by severe acute respiratory syndrome (SARI) in an academic hospital located in Central Italy during the period of 1 November 2019–1 March 2020. Overall, the number of emergency room (ER) visits during the investigated period was 13,843. Of these, 1208 had an influenza-like syndrome, but only 166 matched the definition of SARI as stated in the study protocol. A total of 52 SARI cases were laboratory confirmed as influenza: 26 as a type B virus, 25 as a type A, and 1 as both viruses. Although about 17% of the total sample had laboratory or radiological data compatible with COVID-19, all the nasopharyngeal swabs stored underwent SARS-CoV-2 RT-PCR and tested negative. Based on our result, it is confirmed that the COVID-19 pandemic spread did not start prior to the “official” onset in central Italy. Routine monitoring of SARI causative agents at the local level is critical for reporting epidemiologic and etiologic trends that may differ from one country to another and also among different influenza seasons. This has a practical impact on prevention and control strategies. Full article
Open AccessCommunication
The Association between Influenza Vaccination and the Risk of SARS-CoV-2 Infection, Severe Illness, and Death: A Systematic Review of the Literature
Int. J. Environ. Res. Public Health 2020, 17(21), 7870; https://doi.org/10.3390/ijerph17217870 - 27 Oct 2020
Cited by 1
Abstract
We reviewed the association between seasonal influenza vaccination and the risk of SARS-CoV-2 infection or complicated illness or poor outcome (e.g., severe disease, need for hospitalization or ventilatory support, or death) among COVID-19 patients. None of the studies that were reviewed (n [...] Read more.
We reviewed the association between seasonal influenza vaccination and the risk of SARS-CoV-2 infection or complicated illness or poor outcome (e.g., severe disease, need for hospitalization or ventilatory support, or death) among COVID-19 patients. None of the studies that were reviewed (n = 12) found a significant increase in the risk of infection or in the illness severity or lethality, and some reported significantly inverse associations. Our findings support measures aimed at raising influenza vaccination coverage in the coming months. Full article
Show Figures

Figure 1

Open AccessArticle
Retrospective Assessment of the Antigenic Similarity of Egg-Propagated and Cell Culture-Propagated Reference Influenza Viruses as Compared with Circulating Viruses across Influenza Seasons 2002–2003 to 2017–2018
Int. J. Environ. Res. Public Health 2020, 17(15), 5423; https://doi.org/10.3390/ijerph17155423 - 28 Jul 2020
Abstract
Suboptimal vaccine effectiveness against seasonal influenza is a significant public health concern, partly explained by antigenic differences between vaccine viruses and viruses circulating in the environment. Haemagglutinin mutations within vaccine viruses acquired during serial passage in eggs have been identified as a source [...] Read more.
Suboptimal vaccine effectiveness against seasonal influenza is a significant public health concern, partly explained by antigenic differences between vaccine viruses and viruses circulating in the environment. Haemagglutinin mutations within vaccine viruses acquired during serial passage in eggs have been identified as a source of antigenic variation between vaccine and circulating viruses. This study retrospectively compared the antigenic similarity of circulating influenza isolates with egg- and cell-propagated reference viruses to assess any observable trends over a 16-year period. Using annual and interim reports published by the Worldwide Influenza Centre, London, for the 2002–2003 to 2017–2018 influenza seasons, we assessed the proportions of circulating viruses which showed antigenic similarity to reference viruses by season. Egg-propagated reference viruses were well matched against circulating viruses for A/H1N1 and B/Yamagata. However, A/H3N2 and B/Victoria cell-propagated reference viruses appeared to be more antigenically similar to circulating A/H3N2 and B/Victoria viruses than egg-propagated reference viruses. These data support the possibility that A/H3N2 and B/Victoria viruses are relatively more prone to egg-adaptive mutation. Cell-propagated A/H3N2 and B/Victoria reference viruses were more antigenically similar to circulating A/H3N2 and B/Victoria viruses over a 16-year period than were egg-propagated reference viruses. Full article
Show Figures

Figure 1

Open AccessArticle
Time Length of Negativization and Cycle Threshold Values in 182 Healthcare Workers with Covid-19 in Milan, Italy: An Observational Cohort Study
Int. J. Environ. Res. Public Health 2020, 17(15), 5313; https://doi.org/10.3390/ijerph17155313 - 23 Jul 2020
Cited by 2
Abstract
Background: Coronavirus Disease 2019 (COVID-19) has rapidly spread worldwide, becoming an unprecedented public health emergency. Rapid detection of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) suspected cases is crucial to control the spread of infection. We aimed to evaluate the time length [...] Read more.
Background: Coronavirus Disease 2019 (COVID-19) has rapidly spread worldwide, becoming an unprecedented public health emergency. Rapid detection of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) suspected cases is crucial to control the spread of infection. We aimed to evaluate the time length of negativization from the onset of symptoms in healthcare workers (HCWs) with COVID-19, and to evaluate significant variations in cycle threshold (CT) values and gene positivity (E, RdRP, and N genes) among positive individuals who returned to work. Methods: We retrospectively analyzed a consecutive cohort of 182 SARS-CoV-2-positive HCWs in Milan, from 16 March to 30 April 2020. Nasopharyngeal swabs were tested by RT-PCR. Results: Asymptomatic HCWs were 17.6% (32/182), and 58 healed at 30 April 2020. The median time length of negativization was 4 weeks (35% of symptomatic versus 40% of asymptomatic HCWs). Four HCWs, healed at 30 April, turned positive within three weeks during controls set up in the work unit. Three-gene positivity had the greatest variability, and increasing CT values from single- to three-gene positivity among all age groups were observed. Conclusions: Self-isolation longer than two weeks and prolonged follow-up periods for the staff returning to work after COVID-19 could be the most suitable choices to counter the SARS-CoV-2 spread. Further studies are needed to investigate infectiousness profiles among positive individuals. Full article
Show Figures

Figure 1

Open AccessArticle
Moving Average Based Index for Judging the Peak of the COVID-19 Epidemic
Int. J. Environ. Res. Public Health 2020, 17(15), 5288; https://doi.org/10.3390/ijerph17155288 - 22 Jul 2020
Abstract
A pneumonia outbreak caused by a novel coronavirus (COVID-19) has spread around the world. A total of 2,314,621 laboratory-confirmed cases, including 157,847 deaths (6.8%) were reported globally by 20 April 2020. Common symptoms of COVID-19 pneumonia include fever, fatigue, and dry cough. Faced [...] Read more.
A pneumonia outbreak caused by a novel coronavirus (COVID-19) has spread around the world. A total of 2,314,621 laboratory-confirmed cases, including 157,847 deaths (6.8%) were reported globally by 20 April 2020. Common symptoms of COVID-19 pneumonia include fever, fatigue, and dry cough. Faced with such a sudden outbreak of emerging infectious disease, traditional models for predicting the peak of the epidemic often show inconsistent results. With the aim to timely judge the epidemic peak and provide support for decisions for resuming production and returning to normal life based on publicly reported data, we used a seven-day moving average of log-transformed daily new cases (LMA) to establish a new index named the “epidemic evaluation index” (EEI). We used SARS epidemic data from Hong Kong to verify the practicability of the new index, and then applied it to the COVID-19 epidemic analysis. The results showed that the epidemic peaked, respectively, on 9 February and 5 February 2020, in Hubei Province and other provinces in China. The proposed index can be applied for judging the epidemic peak. While the global COVID-19 epidemic reached its peak in the middle of April, the epidemic peaks in some countries have not yet appeared. Global and united efforts are still needed to eventually eliminate the epidemic. Full article
Show Figures

Figure 1

Open AccessArticle
Prevalence of Sars-Cov-2 Infection in Health Workers (HWs) and Diagnostic Test Performance: The Experience of a Teaching Hospital in Central Italy
Int. J. Environ. Res. Public Health 2020, 17(12), 4417; https://doi.org/10.3390/ijerph17124417 - 19 Jun 2020
Cited by 12
Abstract
(1) Background: Health workers (HWs) are at high risk of acquiring SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2) infections. Therefore, health authorities further recommend screening strategies for SARS-CoV-2 infection in exposed or high-risk HWs. Nevertheless, to date, the best/optimal method to screen HWs [...] Read more.
(1) Background: Health workers (HWs) are at high risk of acquiring SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2) infections. Therefore, health authorities further recommend screening strategies for SARS-CoV-2 infection in exposed or high-risk HWs. Nevertheless, to date, the best/optimal method to screen HWs for SARS-CoV-2 infection is still under debate, and data on the prevalence of SARS-CoV-2 infection in HWs are still scarce. The present study aims to assess the SARS-CoV-2 infection rate amongst HWs in a teaching hospital in Central Italy and the diagnostic performance of SARS-CoV-2 serology (index test) in comparison with the SARS-CoV-2 RNA PCR assay (reference standard). (2) Methods: A cross-sectional study on the retrospective data of HWs tested for SARS-CoV-2 by RNA-RT-PCR on nasopharyngeal swabs and by an IgM/IgG serology assay on venous blood samples, irrespective of exposure and/or symptoms, was carried out. (3) Results: A total of 2057 HWs (median age 46, 19–69 years, females 60.2%) were assessed by the RNA RT-PCR assay and 58 (2.7%) tested positive for SARS-CoV-2 infection. Compared with negative HWs, SARS-CoV-2-positives were younger (mean age 41.7 versus 45.2, p < 0.01; 50% versus 31% under or equal to 40 years old, p < 0.002) and had a shorter duration of employment (64 versus 125 months, p = 0.02). Exposure to SARS-CoV-2 was more frequent in positive HWs than in negatives (55.2% versus 27.5%, p < 0.0001). In 44.8% of positive HWs, no exposure was traced. None of the positive HWs had a fatal outcome, none of them had acute respiratory distress syndrome, and only one required hospitalization for mild/moderate pneumonia. In 1084 (51.2%) HWs, nasopharyngeal swabs and an IgM/IgG serology assay were performed. With regard to IgM serology, sensitivity was 0% at a specificity of 98.99% (positive predictive value, PPV 0%, negative predictive value, NPV 99.2%). Concerning IgG serology and irrespective of the time interval between nasopharyngeal swab and serology, sensitivity was 50% at a specificity of 99.1% (PPV 28.6%, NPV 99.6%). IgG serology showed a higher diagnostic performance when performed at least two weeks after testing SARS-CoV-2-positive at the RNA RT-PCR assay by a nasopharyngeal swab. (4) Conclusions: Our experience in Central Italy demonstrated a low prevalence of SARS-CoV-2 infection amongst HWs, but higher than in the general population. Nearly half of the positive HWs reported no previous exposure to SARS-CoV-2-infected subjects and were diagnosed thanks to the proactive screening strategy implemented. IgG serology seems useful when performed at least two weeks after an RNA RT-PCR assay. IgM serology does not seem to be a useful test for the diagnosis of active SARS-CoV-2 infection. High awareness of SARS-CoV-2 infection is mandatory for all people, but especially for HWs, irrespective of symptoms, to safeguard their health and that of patients. Full article
Show Figures

Figure 1

Back to TopTop