Forest Vegetation and Soils: Interaction, Management and Alterations

A special issue of Forests (ISSN 1999-4907). This special issue belongs to the section "Forest Soil".

Deadline for manuscript submissions: closed (30 April 2024) | Viewed by 14169

Special Issue Editors

Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
Interests: soil degradation; soil microbial diversity; soil remediation; plant functional group; biochar
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
The College of Forestry, Beijing Forestry University, Beijing, China
Interests: forest soil; soil remediation; forestry waste resource utilization
Special Issues, Collections and Topics in MDPI journals
Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
Interests: soil microorganism; soil degradation; soil remediation; ecosystem services
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Forest (grassland) vegetation and its understory soil are always shifting as a result of global climate change, altering the function of forest ecosystem services.

The following issues need to be addressed urgently by forest and grass researchers and management departments:

  • How do different heterogeneous spatial forest (grassland) vegetations and soils respond to global change?
  • What are their strengths and driving mechanisms?
  • How can we manage forest vegetation and soil sources efficiently?
  • How can we improve the function of ecosystem services?

We welcome papers and reviews related but not limited to changes in forest and grass vegetation and soils in different areas, forest and grass vegetation and soil management, plant–soil–microorganism interactions, the resource utilization of forestry waste, etc. Moreover, studies investigating changes in forest and grass resources as a result of climate change and policies, together with characteristics of soil change and its driving mechanisms, will also be considered.

Dr. Qiwu Sun
Prof. Dr. Suyan Li
Dr. Lingyu Hou
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Forests is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • forest vegetation
  • soil degradation
  • ecosystem services
  • forest management
  • soil microorganisms
 
 
 
 
 
 

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (10 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

15 pages, 3716 KiB  
Article
Uptake and Transport of Selenium in a Soil–Tea Plant–Tea Infusion System: A Study of Typical Tea Plantations in a Selenium-Rich Area of China
by Haizhong Wu, Dengxiao Zhang, Xinmin Wu, Xiaosi Tian, Gang Hu, Shiliang Liu, Xiaolei Jie and Daichang Wang
Forests 2024, 15(6), 914; https://doi.org/10.3390/f15060914 - 24 May 2024
Viewed by 622
Abstract
Selenium is an important indicator for the evaluation of tea quality. However, the relationship between selenium uptake by tea plants (Camellia sinensis) and soil properties, as well as selenium transport and distribution in a tea plantation soil–tea plant–tea infusion production system, [...] Read more.
Selenium is an important indicator for the evaluation of tea quality. However, the relationship between selenium uptake by tea plants (Camellia sinensis) and soil properties, as well as selenium transport and distribution in a tea plantation soil–tea plant–tea infusion production system, remain unclear. In this study, 12 tea plantations situated in a typical selenium-rich area of China were selected, and the characteristics and crucial factors influencing the uptake and transport of selenium were analyzed using a plantation soil–tea plant–tea infusion production system. The soil total selenium content ranged from 1.12 to 6.67 mg kg−1, with an average of 2.57 mg kg−1. The average available selenium content was 53.56 µg kg−1, and the activation rate of soil selenium was 2.27%. Soil-available selenium was significantly positively correlated with total selenium, available potassium, and soil organic matter contents, and was significantly negatively correlated with soil pH. The selenium content in old leaves ranged from 0.29 to 2.73 mg kg−1, which met the standard for selenium-rich tea, whereas only 33% of young leaves met this standard. The selenium enrichment factor was highest in the fibrous root and lowest in the young leaves. The average selenium transport factors from fibrous roots to main roots, from main roots to main stems, from main stems to lateral stems, from lateral stems to young leaves, and from lateral stems to old leaves were 0.53, 0.92, 0.67, 0.97, and 2.30, respectively. The selenium concentration of tea infusion ranged from 1.88 to 12.49 μg L−1, and the average selenium dissolution rate was 22.62% after one brewing. This study identified critical factors that influence soil-selenium availability. The selenium content in tea plant organs is indicated to be strongly associated with the selenium content in the main roots. Full article
(This article belongs to the Special Issue Forest Vegetation and Soils: Interaction, Management and Alterations)
Show Figures

Graphical abstract

20 pages, 5153 KiB  
Article
The Short-Term Effects of Heavy Thinning on Selected Soil Carbon Pools and Microbial Activity in a Young Aleppo Pine Forest
by Cristina Lull, Ricardo Gil-Ortiz, Inmaculada Bautista, Antonio del Campo and Antonio Lidón
Forests 2024, 15(4), 658; https://doi.org/10.3390/f15040658 - 4 Apr 2024
Viewed by 937
Abstract
Pinus halepensis Miller is a widespread tree species in the western Mediterranean basin, where very dense monospecific stands can be found, especially in natural regeneration after forest fires. Silvicultural thinning can reduce the competition of trees for natural resources and favour their development, [...] Read more.
Pinus halepensis Miller is a widespread tree species in the western Mediterranean basin, where very dense monospecific stands can be found, especially in natural regeneration after forest fires. Silvicultural thinning can reduce the competition of trees for natural resources and favour their development, although its effect depends on the habitat. The present study aims to know the effects on the soil at the physicochemical and microbiological levels after a heavy thinning in a young pine forest stand with a high stocking density. The stand is on a slope where the soil depth tends to decrease with altitude, and shows changes in its physicochemical properties between the upper and lower zones. Several soil carbon fractions (i.e., soil organic carbon (SOC), water-soluble organic carbon (WSOC), and microbial biomass carbon (MBC)), microbial activity (basal soil respiration (BSR)) and enzyme activities (acid phosphatase (AP) and urease (UA)) were analysed at specific dates over a period of about five years after a heavy thinning. The changes in organic matter content were abrupt in the slope, conditioning the observed differences. It is highlighted that the SOC and WSOC contents in the mineral soil were 2.5- and 3.5-fold significantly higher, respectively, in the upper shallow zone compared to the lower deeper zone. This was also reflected in significantly higher levels of gravimetric water content (GWC) and MBC (both about 1.4-fold higher), with higher levels of BSR and UA, and 2.5-fold significantly higher levels of AP. As a result, most of the properties studied showed no significant differences between the thinning treatment and the untreated control. Results varying between dates, with a strong dependence on climate (soil temperature and humidity) of WSOC and UA. It can be concluded that the heavy thinning applied in this short-term case study favoured the growth conditions of the pine without negatively affecting the soil properties studied. Full article
(This article belongs to the Special Issue Forest Vegetation and Soils: Interaction, Management and Alterations)
Show Figures

Figure 1

19 pages, 3991 KiB  
Article
Responses of Enzymatic and Microbiological Soil Properties to the Site Index and Age Gradients in Spanish Black Pine (Pinus nigra Arn ssp. salzmannii) Mediterranean Forests
by Francisco García-Saucedo, Francisco Antonio García-Morote, Marta Picazo, Consuelo Wic, Eva Rubio, Francisco Ramón López-Serrano and Manuela Andrés-Abellán
Forests 2024, 15(1), 113; https://doi.org/10.3390/f15010113 - 6 Jan 2024
Cited by 1 | Viewed by 1978
Abstract
This research analyzes how enzymatic and microbiological soil properties relate to site index (SI) and forest maturity (stand age) in Pinus nigra (P. nigra) even-aged forests. The soil parameters selected for multivariate analysis were four enzymatic activities (β-glucosidase, urease, dehydrogenase, and [...] Read more.
This research analyzes how enzymatic and microbiological soil properties relate to site index (SI) and forest maturity (stand age) in Pinus nigra (P. nigra) even-aged forests. The soil parameters selected for multivariate analysis were four enzymatic activities (β-glucosidase, urease, dehydrogenase, and alkaline phosphatase), two microbiological properties (microbial biomass C and basal respiration), and five physicochemical parameters (TOC, N, P, pH, and soil water content). We used LiDAR, the digital elevation model, and the terrain model to obtain a result for the dominant height in each plot. The soil parameters were analyzed in the function of five site index classes (8, 11, 14, 17, and 20) and six age classes (50, 70, 90, 110, 170, and 210 years). Our findings emphasize that the dehydrogenase enzyme exhibited variations in response to both the site index and stand age. The activity of dehydrogenase positively correlated with sites characterized by a higher nutrient demand, particularly on young and poor-quality sites (lower SI), indicating activation. Therefore, dehydrogenase could serve as an index to elucidate both site quality and stand development in P. nigra stands, making it a potential indicator of forest ecosystem development. Full article
(This article belongs to the Special Issue Forest Vegetation and Soils: Interaction, Management and Alterations)
Show Figures

Figure 1

24 pages, 3361 KiB  
Article
Developmental Dynamics and Driving Factors of Understory Vegetation: A Case Study of Three Typical Plantations in the Loess Plateau of China
by Hengshuo Zhang, Xuehui Jiao, Tonggang Zha, Xizhi Lv, Yongxin Ni, Qiufen Zhang, Jianwei Wang and Li Ma
Forests 2023, 14(12), 2353; https://doi.org/10.3390/f14122353 - 29 Nov 2023
Viewed by 1399
Abstract
Understory vegetation is one of the most important links for improving forest biodiversity, and its restoration is conducive to sustainable forest development, energy flow, and nutrient cycling. However, little is known about the developmental dynamics and main driving factors of the long-time series [...] Read more.
Understory vegetation is one of the most important links for improving forest biodiversity, and its restoration is conducive to sustainable forest development, energy flow, and nutrient cycling. However, little is known about the developmental dynamics and main driving factors of the long-time series coverage, biomass, diversity, and species composition of plantation understory vegetation. In a case study of three typical plantations, with a natural secondary forest as reference in the Loess Plateau of China, we collected understory vegetation from a Robinia pseudoacacia Linn. deciduous broad-leaved plantation, Pinus tabulaeformis Carr. evergreen coniferous plantation, and mixed plantation with an age span of 10 to 50 years. (1) The understory plantation coverage and biomass results of stands with different ages showed the R. pseudoacacia plantation to be significantly higher than the P. tabulaeformis plantation, and the species diversity of the P. tabulaeformis plantation changed the most with the stand age. However, the growth resource imbalance, and drastic changes in the stands’ environment caused by excessive intraspecific competition in the early stage of the P. tabulaeformis plantation vegetation restoration, are the main reasons that make the species diversity of undergrowth vegetation of P. tabulaeformis plantation lower than that of other stand types. (2) The understory species composition of the plantations revealed their degree of community stability. Compared to the R. pseudoacacia plantation and P. tabulaeformis plantation, the mixed plantation had higher stability, and its species composition closely resembled a natural secondary forest. The community stability of the P. tabulaeformis plantation was the lowest because it had the lowest coverage, biomass, and species diversity of understory vegetation. However, the understory species composition of the three plantation types converged, which was due to atypical species contribution. (3) The dynamic changes of canopy and soil nutrients were the main driving factors affecting the R. pseudoacacia plantation understory vegetation species composition. Stand density and elevation limited the understory vegetation communities of P. tabulaeformis plantation restoration. Soil bulk density is the key factor affecting understory vegetation in mixed plantations, and this effect weakens with the stand age. In future studies, the focus should be on the converged action and further development trend of atypical species, choosing an appropriate recovery strategy (active or passive), and providing more possibilities for the intensive management of vegetation under different plantations. Full article
(This article belongs to the Special Issue Forest Vegetation and Soils: Interaction, Management and Alterations)
Show Figures

Figure 1

14 pages, 2951 KiB  
Article
Trends in Research on Soil Organic Nitrogen over the Past 20 Years
by Shiyou Chen, Chunqian Jiang, Hui Wang, Yanfeng Bai and Chunwu Jiang
Forests 2023, 14(9), 1883; https://doi.org/10.3390/f14091883 - 16 Sep 2023
Cited by 1 | Viewed by 1288
Abstract
Nitrogen (N), an indispensable mineral nutrient element for plant growth and development, is a major limiting source of productivity in many terrestrial ecosystems. Soil organic nitrogen (SON) is a crucial form of nitrogen (N) in the N cycle within terrestrial ecosystems, acting as [...] Read more.
Nitrogen (N), an indispensable mineral nutrient element for plant growth and development, is a major limiting source of productivity in many terrestrial ecosystems. Soil organic nitrogen (SON) is a crucial form of nitrogen (N) in the N cycle within terrestrial ecosystems, acting as either a “source” or a “sink” for environmental N release. In order to illustrate the research trends, evolution process and hotspots of SON, a bibliometric analysis was used to analyze 906 documents based on the ISI (Institute of Scientific Information) Web of Science (WoS) database. The results indicated that (1) the number of published papers on SON research showed a wavy growth from 2000 to 2022 and the research has entered a mature development period; China has been increasing its number of publications and has long been in the lead; (2) the most productive institutions and authors in this subject area are in the USA and China, with the Chinese Academy of Sciences being the key institution performing such research; (3) in the sample, Soil Biology and Biochemistry, Science of the Total Environment, and Biogeochemistry are the leading international journals that have played a key role in the evolution of the field and have laid a solid foundation for future research; (4) the characteristics and maintenance of SON in farmland and SON migration in small watersheds under forest conversion have become research hotspots. Through the in-depth analysis of SON research, this paper provides a better understanding of the development trends of SON over the past 20 years, which can also provide reference for future research. Full article
(This article belongs to the Special Issue Forest Vegetation and Soils: Interaction, Management and Alterations)
Show Figures

Figure 1

15 pages, 2532 KiB  
Article
Phytoremediation Effect and Soil Microbial Community Characteristics of Jiulong Iron Tailings Area, Jiangxi
by Hou Lingyu, Wang Wenzheng, Song Liguo, Wang Qian, Liu Xiangrong, Zhang Yanlin and Sun Qiwu
Forests 2023, 14(9), 1849; https://doi.org/10.3390/f14091849 - 11 Sep 2023
Viewed by 1159
Abstract
The aim of this paper was to explore the remediation effect and mechanism of Wetland pine (Pinus elliottii), Chinese fir (Cunninghamia lanceolata (Lamb.) Hook), and Alder (Alnus cremastogyne Burkill) on heavy metal contaminated soil in the iron tailings [...] Read more.
The aim of this paper was to explore the remediation effect and mechanism of Wetland pine (Pinus elliottii), Chinese fir (Cunninghamia lanceolata (Lamb.) Hook), and Alder (Alnus cremastogyne Burkill) on heavy metal contaminated soil in the iron tailings of Jiulong Iron Tailings Area. At the same time, the specificity of plant rhizosphere and non-rhizosphere soil microbial community structure and ecological function were analyzed based on macrogenomic sequencing. The results showed that the dominant microbial genera in J1 (control) was Acidobacteria, followed by Proteobacteria and Actinobacteria. The microbial genera with the highest percentage of relative abundance in J2, J3, J4, J5, and J6 (J2, Wetland Pine rhizosphere; J3, Wetland Pine non-rhizosphere; J4, Chinese fir rhizosphere; J5, Alder rhizosphere; J6, Alder non-rhizosphere) were Proteobacteria, followed by Acidobacteria, and Actinobacteria. It was found that Proteobacteria promoted heavy metal solubilization, activated heavy metals, and converted their forms to improve plant uptake of heavy metals. This proves that the microorganisms of Proteobacteria are the key microbial genera in the study of regional heavy metal remediation. The antibiotic resistance genes (ARGs) in microorganisms can respond to the inducement of heavy metals. Here, we investigated the relationship between the abundance of soil microorganisms ARGs and heavy metal pollution in Jiulong Iron Tailings Area. There are significant differences in the quantity and category of ARGs in the rhizosphere and non-rhizosphere soil samples of the three tree species. The results of this study provide the foundation for the theory and practice of remediation of heavy metal contamination in soils of iron tailing areas in Jiulong Iron Tailings Area in similar stand conditions. Full article
(This article belongs to the Special Issue Forest Vegetation and Soils: Interaction, Management and Alterations)
Show Figures

Figure 1

13 pages, 5973 KiB  
Article
Application of a Soil Quality Index to a Mediterranean Mountain with Post-Fire Treatments
by Manuela Andrés-Abellán, Marta I. Picazo-Córdoba, Francisco García-Saucedo, Consolación Wic-Baena, Francisco A. García-Morote, Eva Rubio-Caballero, Jose L. Moreno, Felipe Bastida, Carlos García and Francisco R. López-Serrano
Forests 2023, 14(9), 1745; https://doi.org/10.3390/f14091745 - 29 Aug 2023
Cited by 1 | Viewed by 1115
Abstract
In Mediterranean areas, fire has increased soil degradation and erosion. For this reason, the application of soil quality indices can help to determine soil recovery and degradation levels. By using a multiparameter soil quality index fitted to undisturbed forest soils, we can show [...] Read more.
In Mediterranean areas, fire has increased soil degradation and erosion. For this reason, the application of soil quality indices can help to determine soil recovery and degradation levels. By using a multiparameter soil quality index fitted to undisturbed forest soils, we can show the right information on soil functionality. In this study, the objectives were to evaluate soil functionality after suffering a fire, to subsequently treat with various soil treatments (wood mulching), and then check a soil quality index (SQI) to assess the soil quality recovery in burned Pinus nigra stands. For this purpose, a burned area was selected in the Cuenca Mountain range (Spain) under a Mediterranean climate. Experimental plots were established in the study area, with three slope gradients and applying three methods of covering soil using: (1) wood chips; (2) piles of branches; and (3) trunks of contour-felled logs. The experiment was conducted for 4 years. Results showed that the properties of soil were enhanced under wood chips and logs as a surface-covering material, and in a short time (less of 3 years). In consequence, the values of the SQI index were higher after applying these two treatments, thus reflecting the effectiveness of the SQI for monitoring post-fire recovery. Full article
(This article belongs to the Special Issue Forest Vegetation and Soils: Interaction, Management and Alterations)
Show Figures

Graphical abstract

15 pages, 3248 KiB  
Article
Soil Organic Carbon and Total Nitrogen Stocks and Interactions with Soil Metal Oxides in Different Climatic Zones
by Wenzhi Zhou, Suyan Li, Xiangyang Sun, Rongsong Zou, Libing He, Jiantao Yu, Guanyu Zhao, Zhe Chen, Xueting Bai and Jinshuo Zhang
Forests 2023, 14(8), 1572; https://doi.org/10.3390/f14081572 - 1 Aug 2023
Cited by 1 | Viewed by 1231
Abstract
Studying both soil carbon (C) and nitrogen (N) storages in different climate zones and their relationship with climatic factors is of great significance for understanding soil fertility and predicting global climate change. Climate influences soil minerals, which are important for soil organic carbon [...] Read more.
Studying both soil carbon (C) and nitrogen (N) storages in different climate zones and their relationship with climatic factors is of great significance for understanding soil fertility and predicting global climate change. Climate influences soil minerals, which are important for soil organic carbon (SOC) and N retention. However, there are few studies on SOC and soil total nitrogen (STN) storage in different climatic zones, and of the effects of soil oxidation minerals on SOC and STN storage. We measured the storage of SOC and STN and the content of oxidizable minerals in soils from different climatic regions, then obtained climate data from the China Meteorological Data Service Center, and finally investigated the effects of climate factors and soil oxides minerals on SOC and STN. The results showed that climatic factors (mean annual temperature—MAT, mean annual precipitation—MAP, and ≥10 °C mean annual cumulative temperature—MACT) had significant effects on SOC and STN content, and there was significant epistatic clustering of SOC and STN contents in different climatic zones. When MAT, MAP, and MACT increased, SOC and STN storage showed a trend of increasing and then decreasing, and both SOC and STN storages were largest in the middle temperate zone. The content of soil metal oxides (Al2O3, Fe2O3, Na2O, MgO, CaO, K2O, and TiO2) showed significant positive correlation with climatic factors (MAT, MAP, and MACT). The contents of Al2O3, Fe2O3, CaO, K2O, and TiO2 showed significant negative correlation with SOC and STN contents. In summary, our results showed that, although soil metal oxides (SMO) have a protective effect on SOC and STN to some extent, they do not change the influence of climatic factors on SOC and STN storage. Full article
(This article belongs to the Special Issue Forest Vegetation and Soils: Interaction, Management and Alterations)
Show Figures

Figure 1

15 pages, 3717 KiB  
Article
Effects of Changing Restoration Years on Soil Nutrient Traits and Plant Community Diversity in a Phosphate Mining Area
by Cui Xu, Siping Kuang, Lu He, Chunxue Wang and Yanqun Zu
Forests 2023, 14(7), 1468; https://doi.org/10.3390/f14071468 - 18 Jul 2023
Cited by 1 | Viewed by 1435
Abstract
The thinning vegetation and soil erosion problems left behind by extractive mining have caused serious environmental pollution, and vegetation restoration is one of the effective strategies to counter them. To study the effects of vegetation restoration on plant community species diversity, soil carbon, [...] Read more.
The thinning vegetation and soil erosion problems left behind by extractive mining have caused serious environmental pollution, and vegetation restoration is one of the effective strategies to counter them. To study the effects of vegetation restoration on plant community species diversity, soil carbon, nitrogen and phosphorus, and the response of their plant community succession, four communities of different ages (1, 7, 10, 40) and one natural forest (>50 years) in the Kunyang phosphate mine were selected, and the analysis was carried out using the methods and protocols for plant community inventory. The species composition was recorded, and soil was collected from 0–60 cm in each community to determine the response of soil nutrients and plant diversity to the restoration process. The results show that the species richness of the community increases with the restoration year, the species composition at 40 years of restoration is similar to that of the natural forest, and the Shannon–Wiener diversity index in the tree layer at 40 years of restoration is greater than in the natural forest. Soil pH showed a decreasing trend with restoration year, and TP and AP increased with increasing time series. And the linear stepwise regression analysis showed that soil pH, soil organic carbon (SOC), total phosphorous (TP), available phosphorous (AP), and restoration year were the main factors of plant diversity. Compared to restoration of 10 years, TP and AP at the restoration of 40 years increased to 11.9–20.0 g∙kg−1 and 33.4–75.5 mg∙kg−1. The SOC of the community reached a maximum at 40 years of restoration, 1.5, 2.8, and 2.4 times higher at 0–20 cm, 20–40, and 40–60 cm, respectively, than at 1 year. The organic carbon fraction increased with the restoration year in an ‘N’ pattern, and mineral-associated organic carbon (MOC) and unstable organic carbon fraction decreased at 10 years and 40 years of restoration. The SOC of natural forests decreased, but stable organic carbon increased. The soil pH, SOC, and organic carbon fraction of the communities decreased with increasing soil depth, while TP and AP increased with increasing soil depth at the later period of restoration. In general, with extended restoration years, 40 years plant of restoration in phosphate mines can be expected to allow for plant community succession to climax community, and the key influence on plant diversity are the phosphorus and stable carbon fractions. These results are expected to facilitate the future basis for vegetation succession and restore systems during mining area restoration. Full article
(This article belongs to the Special Issue Forest Vegetation and Soils: Interaction, Management and Alterations)
Show Figures

Figure 1

17 pages, 3774 KiB  
Article
Heavy Metal Concentrations and Accumulation Characteristics of Dominant Woody Plants in Iron and Lead−Zinc Tailing Areas in Jiangxi, Southeast China
by Yanglong Li, Chaoqun Wang, Chaowu Yan, Shaowen Liu, Xiangteng Chen, Mansheng Zeng, Yuhong Dong and Ruzhen Jiao
Forests 2023, 14(4), 846; https://doi.org/10.3390/f14040846 - 20 Apr 2023
Cited by 6 | Viewed by 2027
Abstract
Phytoremediation using woody plants can effectively reduce heavy metal (HM) concentrations in soils. However, the remediation capacity of woody plants depends greatly on plant species and soil environmental conditions. In order to evaluate the HM remediation potential of woody plants from different tailing [...] Read more.
Phytoremediation using woody plants can effectively reduce heavy metal (HM) concentrations in soils. However, the remediation capacity of woody plants depends greatly on plant species and soil environmental conditions. In order to evaluate the HM remediation potential of woody plants from different tailing areas, the HM accumulation characteristics of roots, shoots, and leaves of 12 dominant native woody plants growing in iron and lead-zinc tailing areas were analyzed. The results showed that the concentrations of Cd, As, Ni, Mn, and Cr in most plants in the two tailing areas exceeded the level of normal plants. The distribution of different elements in plants was generally as follows: root > leaf > shoot for Pb and As; root > shoot > leaf for Cr; and leaf > shoot > root for Zn, Ni, and Mn. The distribution of Cu and Cd in plants varied with the type of HM pollution in the two tailing areas. There were significant (p < 0.05) negative correlations between available phosphorus in the soil and Pb, Cd, and Zn in the plant roots when the soil was heavily polluted with Pb, Cd, and As; similarly, there were significant (p < 0.01) negative correlations between readily available potassium in the soil and Pb, Zn, and Ni in plant roots. Based on the higher than average concentration of HMs in plants, and higher bioconcentration factors and translocation factors, some plants were considered woody plant species with phytoremediation. Slash pine (Pinus elliottii) and indian azalea (Rhododendron simsii) had strong enrichment and translocation abilities for Cd, oriental white oak (Quercus glauca) and beautiful sweetgum (Liquidambar formosana) for Mn and paulownia (Paulownia fortunei) for Zn. The plants listed above can be used as potential species for phytoremediation in iron and lead-zinc tailing areas. Full article
(This article belongs to the Special Issue Forest Vegetation and Soils: Interaction, Management and Alterations)
Show Figures

Figure 1

Back to TopTop