Biotechnological Strategies for Agro-Industrial Food Waste Management

A special issue of Fermentation (ISSN 2311-5637). This special issue belongs to the section "Industrial Fermentation".

Deadline for manuscript submissions: 31 December 2025 | Viewed by 163

Special Issue Editor


E-Mail Website
Guest Editor
Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
Interests: microbial fermentation; fermentation process management; biofuel; biorefinery; value-added products; microbial pigments production; microbial carotenoids; functional food
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Agro-industrial waste can be considered as the most abundant renewable resources on earth, expected to reach 3.40 billion metric tons by 2050. This waste, if disposed of untreated, can act as pollutants to the environment, affecting both humans and other living organisms. Their composition makes this waste suitable for their reuse to obtain added-value products, according to the Sustainable Development Goals (SDGs) of the United Nations, minimizing environmental problems and helping the economy and society. Currently agro-industrial waste is applied through biotechnological techniques as promising substrates for improving their stability and applicability in several sectors.

The aim of this Special Issue is to consider original studies on agro-industrial waste fermentation techniques through controlled fermentation processes carried out by selected microorganisms, for obtaining value-added products such as biofertilizers, enzymes, biopolymers, bioplastic, bioactive molecules, platform chemicals, food and feed supplements, single cell proteins, single cell oils, biofuel, bioenergy, and microbial pigments.

Dr. Alessia Tropea
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Fermentation is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2100 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • agricultural food waste
  • food waste management
  • bioenergy
  • biofuel
  • waste valorization
  • biotechnology
  • starter cultures
  • fermentation process

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

24 pages, 1679 KB  
Article
Integrated Biorefinery of Brewer’s Spent Grain for Second-Generation Ethanol, Mycoprotein, and Bioactive Vinasse Production
by Sara Saldarriaga-Hernandez, José García-Béjar, Anahid Esparza-Vasquez, Rosa Leonor González-Díaz, Eduardo Joel López-Torres, Julio César López-Velázquez, Lorena Amaya-Delgado, Tomás García-Cayuela, Hemant Choudhary, Blake A. Simmons and Danay Carrillo-Nieves
Fermentation 2025, 11(11), 627; https://doi.org/10.3390/fermentation11110627 - 3 Nov 2025
Abstract
Brewer’s spent grain (BSG), the main lignocellulosic by-product of the beer industry, represents an abundant yet underutilized resource with high potential for valorization. This study presents an integrated biorefinery approach to convert BSG into second-generation (2G) ethanol, bioactive vinasse for plant growth promotion, [...] Read more.
Brewer’s spent grain (BSG), the main lignocellulosic by-product of the beer industry, represents an abundant yet underutilized resource with high potential for valorization. This study presents an integrated biorefinery approach to convert BSG into second-generation (2G) ethanol, bioactive vinasse for plant growth promotion, and fungal biomass as a potential mycoprotein source. The biomass was first subjected to biological delignification using the white-rot fungus Ganoderma lucidum, after which two valorization routes were explored: (i) evaluation of the fungal biomass as a mycoprotein candidate and (ii) alcoholic fermentation for ethanol production. For the latter, three pretreatment strategies were assessed (diluted sulfuric acid and two deep eutectic solvents (DESs) based on choline chloride combined with either glycerol or lactic acid) followed by a one-pot enzymatic saccharification and fermentation using Kluyveromyces marxianus SLP1. The highest ethanol yield on substrate (YP/S) was achieved with [Ch]Cl:lactic acid pretreatment (0.46 g/g, 89.32% of theoretical). Vinasse, recovered after distillation, was characterized for organic acid content and tested on Solanum lycopersicum seed germination, showing promising biostimulant activity. Overall, this work highlights the potential of BSG as a sustainable feedstock within circular economy models, enabling the production of multiple bio-based products from a single residue. Full article
(This article belongs to the Special Issue Biotechnological Strategies for Agro-Industrial Food Waste Management)
Show Figures

Graphical abstract

Back to TopTop