Special Issue "Smart Energy Management for a Sustainable Built Environment"

A special issue of Environments (ISSN 2076-3298).

Deadline for manuscript submissions: closed (30 September 2018)

Special Issue Editor

Guest Editor
Dr. Alessia Arteconi

Università eCampus, via Isimbardi 10, Novedrate (CO) 22060, Italy
Website 1 | Website 2 | E-Mail
Interests: demand side management; energy flexibility; energy efficiency

Special Issue Information

Dear Colleagues,

The energy demand of buildings represents a large share of the total energy demand worldwide, thus, it is of paramount importance to promote and achieve a sustainable built environment. In particular, improving the energy efficiency and exploiting the energy flexibility that buildings can provide improves the overall efficiency of the energy system. The built environment interacts with different energy networks, such as the electricity grid, natural gas grid and thermal networks. In general, buildings can be coupled to multi-carrier energy systems and their inner flexibility can be exploited to optimize the overall energy system in order to make better use of the available resources and achieve a sustainable energy system. There are different kinds of energy demand in buildings, which can be mainly divided into electricity and thermal demand. The energy demand of buildings can be reduced by means of different actions aimed at increasing their energy efficiency. Furthermore, part of the demand is due to the so-called deferrable loads, which can be shifted in time without altering the service provided to the end user (e.g., refrigerators, dishwashers and thermostatically controlled loads).

The focus of this Special Issue concerns the smart management of energy demand in the built environment, which can be realized in different ways, e.g., by refurbishment, use of higher performing energy production devices, introduction of energy storage systems, and proper control strategies. All of these actions can indeed make buildings interact with the energy production system in a more effective way, leading to a more sustainable world.

Dr. Alessia Arteconi
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Environments is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 300 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Energy efficiency
  • Energy flexibility
  • Demand side management
  • Energy storage
  • Multi-carrier energy systems
  • Integrated energy systems

Published Papers (3 papers)

View options order results:
result details:
Displaying articles 1-3
Export citation of selected articles as:

Research

Open AccessArticle Multi-Country Analysis on Energy Savings in Buildings by Means of a Micro-Solar Organic Rankine Cycle System: A Simulation Study
Environments 2018, 5(11), 119; https://doi.org/10.3390/environments5110119
Received: 4 October 2018 / Revised: 29 October 2018 / Accepted: 31 October 2018 / Published: 2 November 2018
PDF Full-text (3185 KB) | HTML Full-text | XML Full-text
Abstract
In this paper, the smart management of buildings energy use by means of an innovative renewable micro-cogeneration system is investigated. The system consists of a concentrated linear Fresnel reflectors solar field coupled with a phase change material thermal energy storage tank and a
[...] Read more.
In this paper, the smart management of buildings energy use by means of an innovative renewable micro-cogeneration system is investigated. The system consists of a concentrated linear Fresnel reflectors solar field coupled with a phase change material thermal energy storage tank and a 2 kWe/18 kWth organic Rankine cycle (ORC) system. The microsolar ORC was designed to supply both electricity and thermal energy demand to residential dwellings to reduce their primary energy use. In this analysis, the achievable energy and operational cost savings through the proposed plant with respect to traditional technologies (i.e., condensing boilers and electricity grid) were assessed by means of simulations. The influence of the climate and latitude of the installation was taken into account to assess the performance and the potential of such system across Europe and specifically in Spain, Italy, France, Germany, U.K., and Sweden. Results show that the proposed plant can satisfy about 80% of the overall energy demand of a 100 m2 dwelling in southern Europe, while the energy demand coverage drops to 34% in the worst scenario in northern Europe. The corresponding operational cost savings amount to 87% for a dwelling in the south and at 33% for one in the north. Full article
(This article belongs to the Special Issue Smart Energy Management for a Sustainable Built Environment)
Figures

Figure 1

Open AccessArticle Analysis of the Methodologic Assumptions of the NOM-020-ENER-2011—Mexican Residential Building Standard
Environments 2018, 5(11), 118; https://doi.org/10.3390/environments5110118
Received: 20 August 2018 / Revised: 20 October 2018 / Accepted: 30 October 2018 / Published: 1 November 2018
PDF Full-text (5426 KB) | HTML Full-text | XML Full-text
Abstract
In Mexico, residents of low income housing mainly achieve thermal comfort through mechanical ventilation and electrical air conditioning systems. Though government and private efforts have risen to meet an increasing demand for social housing, the average construction quality and thermal comfort of new
[...] Read more.
In Mexico, residents of low income housing mainly achieve thermal comfort through mechanical ventilation and electrical air conditioning systems. Though government and private efforts have risen to meet an increasing demand for social housing, the average construction quality and thermal comfort of new housing stock has decreased over the years. Various programs and regulations have been implemented to address these concerns, including the 2011 residential building standard NOM-020-ENER-2011. This standard attempts to limit heat gains in residential buildings, in order to reduce the energy consumption required from cooling systems, and was intended to be applied throughout Mexico. NOM-020-ENER-2011, however, divides the country into just four climatic zones and only considers the energy use of cooling systems, disregarding heating costs. The recommendations of this policy are thus inadequate for the many regions in Mexico that have mild to moderate winters. This study discusses the assumptions and calculations that underlie NOM-020-ENER-2011, identifying several problems and recommending specific changes to the standard that would lead to greater comfort and lower energy use throughout Mexico. Full article
(This article belongs to the Special Issue Smart Energy Management for a Sustainable Built Environment)
Figures

Figure 1

Open AccessArticle Estimation of Energy Savings Potential in Higher Education Buildings Supported by Energy Performance Benchmarking: A Case Study
Environments 2018, 5(8), 85; https://doi.org/10.3390/environments5080085
Received: 6 June 2018 / Revised: 19 July 2018 / Accepted: 19 July 2018 / Published: 24 July 2018
PDF Full-text (3356 KB) | HTML Full-text | XML Full-text
Abstract
This paper presents results of work developed in the field of building energy benchmarking applied to the building stock of the Polytechnic Institute of Leiria, Portugal, based on a thorough energy performance characterisation of each of its buildings. To address the benchmarking of
[...] Read more.
This paper presents results of work developed in the field of building energy benchmarking applied to the building stock of the Polytechnic Institute of Leiria, Portugal, based on a thorough energy performance characterisation of each of its buildings. To address the benchmarking of the case study buildings, an energy efficiency ranking system was applied. Following an energy audit of each building, they were grouped in different typologies according to the main end-use activities developed: Pedagogic buildings, canteens, residential buildings and office buildings. Then, an energy usage indicator was used to establish a metric to rank the buildings of each typology according to their energy efficiency. The energy savings potential was also estimated, based on the reference building energy usage indicator for each typology, and considering two different scenarios, yielding potential savings between 10% and 34% in final energy consumption. Full article
(This article belongs to the Special Issue Smart Energy Management for a Sustainable Built Environment)
Figures

Figure 1

Back to Top