Special Issue "Nanoparticles and Nanofluids for Energy Applications"

A special issue of Energies (ISSN 1996-1073). This special issue belongs to the section "Advanced Energy Materials".

Deadline for manuscript submissions: 28 February 2021.

Special Issue Editor

Dr. Helena M. R. Gonçalves
Website
Guest Editor
REQUIMTE, Instituto Superior de Engenharia do Porto, 4200-072 Porto, Portugal
Interests: nanoparticles; carbon dots; quantum dots; nanofluids; plasmonic effect; biosensing; photodynamic therapy, stem cells; smart windows devices, sustainable energy

Special Issue Information

Dear Colleagues,

Energy consumption worldwide is constantly growing, and with it, there is a pressing need to develop new materials that can tackle this demand in a sustainable way. In the building sector, it is of the utmost importance that energy consumption can be counterbalanced with the generation of renewable energy, in situ. We live in a technological world, and in this reality, nanotechnology has a major role. Indeed, the number of nanoparticle/nanodevice applications is ever-growing. The use of nanotechnology in the development of new and alternative methods for pharmaceutical, medicinal, optical engineering, biosensing, and energy applications, among others, has boosted research on new nanoparticles and nanofluids. In the energy area, nanoparticles can be found in, e.g., storage units, luminescent solar concentrators, smart windows, and heat transfer mechanisms. All of these can provide high input in society and in the construction of a sustainable energy future. Nanofluids, for example, have a largely superior performance when compared to the currently employed heat transfer liquids; as such, they are greatly promising for applications in thermal management in sectors ranging from space exploration, automotive industry, and energy storage, to medicine, including cancer therapy. Another interesting application of nanoparticles is in luminescent solar concentrators (LSCs). These devices can potentially transform a building façade into an electricity power generator. As researchers, the possibility of creating a green, sustainable, future for generations to come is in our hands.

Dr. Helena M. R. Gonçalves
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Energies is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1800 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Nanoparticles
  • Nanofluids
  • Luminescent solar concentrators
  • Plasmonics
  • Smart window devices
  • Storage energy devices
  • Heat transfer
  • Sustainability

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Open AccessArticle
Effect of Nanofluid Thermophysical Properties on the Performance Prediction of Single-Phase Natural Circulation Loops
Energies 2020, 13(10), 2523; https://doi.org/10.3390/en13102523 - 15 May 2020
Abstract
Specifying nanofluids’ thermophysical properties correctly is crucial for correct interpretation of a system’s thermo-hydraulic performance and faster market-uptake of nanofluids. Although, experimental and theoretical studies have been conducted on nanofluids’ thermophysical properties; their order-of-magnitude change is still a matter of debate. This numerical [...] Read more.
Specifying nanofluids’ thermophysical properties correctly is crucial for correct interpretation of a system’s thermo-hydraulic performance and faster market-uptake of nanofluids. Although, experimental and theoretical studies have been conducted on nanofluids’ thermophysical properties; their order-of-magnitude change is still a matter of debate. This numerical study aims to reveal the sensitivity of single phase natural circulation loops (SPNCL), which are the passive systems widely used in solar thermal and nuclear applications, to thermophysical property inputs by evaluating the effects of measured and predicted nanofluid thermophysical properties on the SPNCL characteristics and performance for the first time. Performance and characteristics of an SPNCL working with water-based-Al2O3 nanofluid (1–3 vol.%) for heating applications is evaluated for different pipe diameters (3–6 mm). The thermal conductivity effect on SPNCL characteristics is found to be limited. However, viscosity affects the SPNCL characteristics significantly for the investigated cases. In this study, Grm ranges are 1.93 × 107–9.45 × 108 for measured thermophysical properties and 1.93 × 107–9.45 × 108 for predicted thermophysical properties. Thermo-hydraulic performance is evaluated by dimensionless heat transfer coefficients which is predicted within an error band of ±7% for both the predicted and measured thermophysical properties of the data. A Nu correlation is introduced for the investigated SPNCL model, which is useful for implementing the SPNCL into a thermal system. Full article
(This article belongs to the Special Issue Nanoparticles and Nanofluids for Energy Applications)
Show Figures

Graphical abstract

Back to TopTop