energies-logo

Journal Browser

Journal Browser

Biomass and Municipal Solid Waste Thermal Conversion Technologies: 3rd Edition

A special issue of Energies (ISSN 1996-1073). This special issue belongs to the section "A4: Bio-Energy".

Deadline for manuscript submissions: closed (5 December 2025) | Viewed by 2179

Special Issue Editors


E-Mail Website
Guest Editor
Institute of Thermal Science and Technology, Shandong University, Jinan 250061, China
Interests: biomass pyrolysis; biomass combustion; biomass gasification; biomass utilization; combustion analysis
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
Interests: carbon-based materials for energy or environment; electrochemical energy conversion and storage (Li/Na ion batteries/capacitors, EDLCs, electrocatalysis); coal-based carbon materials; coal pyrolysis; pollutants recyclable/synergistic removal technology
Special Issues, Collections and Topics in MDPI journals
Shandong Key Laboratory of Energy Carbon Reduction and Resource Utilization, School of Energy and Power Engineering, Shandong University, Jinan 250061, China
Interests: solid fuels; clean combustion; pollutants control; coal combustion; oxy-fuel combustion;
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Climate change is among the most pressing challenges of the 21st century. Concerns about the environmental impact of greenhouse gas emissions from burning fossil-based fuels have promoted the use of renewable sources of energy. These include renewable biomass, which is readily available. Notably, during the past few decades, municipal solid waste (MSW) has been drastically increasing around the world as a result of the growing urbanization. The development of the utilization of alternative resources has raised a number of other tasks and constraints linked to the nature of renewable resources, including the treatment, processing, thermal conversion, and applied technologies, and, thus, a large number of critical views on this issue. Hence, in this research topic, different kinds of “Thermal Conversion Technologies” for biomass and MSW utilization could be discussed herein.

Dr. Xiaohan Ren
Prof. Dr. Fei Sun
Dr. Juan Chen
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 250 words) can be sent to the Editorial Office for assessment.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Energies is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • thermochemical conversion (combustion, pyrolysis, gasification) of biomass
  • MSW drying, incineration and pyrolysis
  • physical conversion (pelletizing, densification, extraction)
  • liquid biofuels such as biodiesel, bioethanol and bio-oils
  • life-cycle analysis of the conversion process
  • carbon materials based on biomass and MSW
  • other thermal conversion technologies on biomass and MSW

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Related Special Issue

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

20 pages, 3805 KB  
Article
Numerical Simulation of Co-Firing Biomass in a 660 MW Coal-Fired Boiler
by Zhihua Du, Liu Liu, Mingdong Li, Xiangyu Zhang, Yuhang Li, Miaomiao Hao, Jiamin Gao and Xiaohan Ren
Energies 2025, 18(23), 6082; https://doi.org/10.3390/en18236082 - 21 Nov 2025
Viewed by 295
Abstract
To address the challenges of combustion stability and pollutant control during biomass co-combustion in coal-fired boilers under deep peak regulation, a numerical simulation study was conducted on a 660 MW front-and-rear wall opposed-fired pulverized coal boiler using computational fluid dynamics (CFD) technology. First, [...] Read more.
To address the challenges of combustion stability and pollutant control during biomass co-combustion in coal-fired boilers under deep peak regulation, a numerical simulation study was conducted on a 660 MW front-and-rear wall opposed-fired pulverized coal boiler using computational fluid dynamics (CFD) technology. First, the reliability of the numerical model was validated under the Boiler Maximum Continuous Rating (BMCR) condition by comparing the simulated results of furnace outlet temperature and NO concentration with on-site operational data, with relative errors of 1.2% and 1.9%, respectively, both within the acceptable range of 5%. Subsequently, the effects of different biomass co-combustion ratios (0%, 5%, 10%, 15%, 20%) and injection positions (primary air nozzles of lower, middle, and upper burners) on the in-furnace velocity field, temperature field, component distribution (O2, CO, CO2), and NO emissions were systematically analyzed. The results indicate that increasing the biomass co-combustion ratio does not alter the overall variation trend of flue gas components but significantly affects their concentrations: the O2 content at the furnace outlet decreases gradually, while the CO2 content increases, and the NO emission concentration decreases continuously. A 20% co-combustion ratio is identified as the optimal choice, balancing combustion efficiency and NO reduction. Regarding injection positions, biomass injected at the middle burner’s primary air nozzle achieves the best NO control effect, reducing NO emissions by 22% compared to pure coal combustion. This is attributed to the formation of a stable reducing atmosphere in the main combustion zone, which facilitates NOx reduction. The research findings provide valuable theoretical references and technical support for the parameter optimization and safe, low-emission operation of biomass co-combustion in large-scale coal-fired boilers. Full article
Show Figures

Figure 1

34 pages, 10116 KB  
Article
Gas Evolution and Stability of Alkali-Activated MSWI Slag and Fly Ash: Implications for Safe Use and Energy Valorization
by Beata Łaźniewska-Piekarczyk, Grzegorz Dzido, Monika Czop and Małgorzata Kajda-Szcześniak
Energies 2025, 18(21), 5857; https://doi.org/10.3390/en18215857 - 6 Nov 2025
Viewed by 330
Abstract
This study investigates the valorization of municipal solid waste incineration (MSWI) residues—specifically bottom ash with slag (BA + S) and fly ash (FA)—through alkaline activation in geopolymer and cementitious systems. The research demonstrates that alkali activation significantly improves mechanical properties, with compressive strengths [...] Read more.
This study investigates the valorization of municipal solid waste incineration (MSWI) residues—specifically bottom ash with slag (BA + S) and fly ash (FA)—through alkaline activation in geopolymer and cementitious systems. The research demonstrates that alkali activation significantly improves mechanical properties, with compressive strengths up to 45.9 MPa for cement mortars and 33.2 MPa for geopolymers. A key innovation includes the quantification of hydrogen gas release during activation, with up to 72.5 dm3/kg H2 from BA + S, offering insights into binder design and potential green hydrogen recovery. Environmental leachability assessments confirmed that activated BA + S immobilizes heavy metals effectively, although FA showed higher barium and lead leaching. Morphological analysis (SEM, granulometry) revealed microstructural changes enhancing reactivity. Additionally, a practical swelling test is proposed for early detection of expansion risk. The findings contribute to the development of sustainable, high-performance binders from waste, with implications for circular economy and energy valorization strategies. Full article
Show Figures

Graphical abstract

19 pages, 2389 KB  
Article
Thermal Conductivity of Sustainable Earthen Materials Stabilized by Natural and Bio-Based Polymers: An Experimental and Statistical Analysis
by Rizwan Shoukat, Marta Cappai, Giorgio Pia, Tadeusz Kubaszek, Roberto Ricciu, Łukasz Kolek and Luca Pilia
Energies 2025, 18(12), 3144; https://doi.org/10.3390/en18123144 - 15 Jun 2025
Cited by 1 | Viewed by 1155
Abstract
The natural and sustainable ability of earthen building materials makes them highly valuable. Bio-stabilization involves using biological materials or processes in earthen construction to enhance the performance and characteristics of earthen materials. The main objective of bio-stabilization is to substitute high-energy-intensive building materials [...] Read more.
The natural and sustainable ability of earthen building materials makes them highly valuable. Bio-stabilization involves using biological materials or processes in earthen construction to enhance the performance and characteristics of earthen materials. The main objective of bio-stabilization is to substitute high-energy-intensive building materials with more green, thermally efficient substitutions, ultimately reducing indirect emissions. The large-scale use of earth presents a viable alternative due to its extensive availability and, more importantly, its low embodied energy. The aim of this work is to investigate the thermal conductivity of earth stabilized with Opuntia Ficus-Indica (OFI), a natural biopolymer, and to assess how these properties vary based on mix design. A comparative analysis is performed to evaluate the thermal performance of bio-based polymer-stabilized earthen materials (S-30, S-40, D-30, and D-40) alongside natural biopolymer-stabilized earth (OFI-30 and OFI-40) under dry conditions, employing an experimental method. A scanning electron microscope was employed to examine the microstructure of bio-stabilized earthen materials from the samples. Statistical analysis was conducted on the collected data using ANOVA with a significance level of 0.05. The Tukey test was applied to identify specific mean pairings that demonstrate significant differences in the characteristics of the mixtures at each replacement level, maintaining a confidence interval of 95%. The experimental and statistical findings reveal that the OFI-30, D-40, and S-40 mixtures exhibit strong bonding with earthen materials and high thermal performance compared to all other mix designs in environmental samples. Additionally, these mix designs show further improvement in thermal performance in the dry conditions. Full article
Show Figures

Figure 1

Back to TopTop