Advances in Textile-Based Materials and Polymer Composite Coatings

A special issue of Coatings (ISSN 2079-6412). This special issue belongs to the section "Functional Polymer Coatings and Films".

Deadline for manuscript submissions: closed (10 January 2025) | Viewed by 1687

Special Issue Editor


E-Mail Website
Guest Editor
Mechanical and Electrical Engineering Faculty, Petroleum-Gas University of Ploiesti, 100680 Ploiesti, Romania
Interests: composite materials for pipeline repairs; finite element analysis; mechanical testing of materials; 3D printing; computer-aided design; material science; engineering printing; computer aided design; material science furthermore; engineering
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Composites made from Textile-Based Materials and Polymer Composites are a crucial and highly adaptable category of materials widely utilized in numerous fields. Their flexibility and the range of criteria for classification enable the creation of tailored solutions to address distinct requirements in sectors such as civil engineering, aerospace, automotive, and marine, among others. The distinguishing characteristics of Textile-Based Materials and Polymer Composites include the type of reinforcing fiber used, the composition of the matrix material, the employed manufacturing process, the orientation of the fibers, and the specific end-use application. These classification variables offer engineers a versatile structure to determine and select the most appropriate materials and production techniques for their specific needs.

The aim of this Special Issue is to centralize information on the latest advancements regarding the evaluation and utilization of Textile-Based Materials and Polymer Coatings:

  1. Mechanical, physical, and chemical properties of the Textile-Based Materials and Polymer Composites (mechanical Strength; durability; lightweight; flexibility; chemical resistance; thermal stability; corrosion resistance).
  2. Comprehensive overview of a corrosion assessment of Textile-Based Materials and Polymer Composites.
  3. Computational analysis, numerical simulation, etc., regarding the adhesion of the Textile-Based Materials and Polymer Composites.
  4. Experimental tests regarding the operational usage modes of the Textile-Based Materials and Polymer Composites.
  5. The assessment of Textile-Based Materials’ and Polymer Composites’ in-service behavior using the finite element method.

Dr. Alin Dinita
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Coatings is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • textile materials
  • polymers
  • composites
  • adhesion
  • coatings
  • mechanical properties
  • chemical properties

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

24 pages, 5128 KiB  
Article
Polyacrylate Latex Coating Binders Comprising Polypyrrole Component Prepared with “One-Pot” Synthesis
by Karolína Boštíková, Miroslav Kohl, Andréa Kalendová, Petr Knotek, Miroslava Trchová, Jaroslav Stejskal, Eva Schmidová and Jana Machotová
Coatings 2024, 14(12), 1565; https://doi.org/10.3390/coatings14121565 - 13 Dec 2024
Viewed by 1314
Abstract
This work deals with the coating properties of synthetic latices comprising two kinds of polymers, specifically polyacrylate and polypyrrole, which were simultaneously formed by semi-continuous emulsion polymerization using a “one-pot” synthesis strategy. In this procedure, both the emulsion polymerization of acrylate monomers and [...] Read more.
This work deals with the coating properties of synthetic latices comprising two kinds of polymers, specifically polyacrylate and polypyrrole, which were simultaneously formed by semi-continuous emulsion polymerization using a “one-pot” synthesis strategy. In this procedure, both the emulsion polymerization of acrylate monomers and the oxidative polymerization of pyrrole occurred concurrently in one reactor. Polyacrylate latices differing in polypyrrole loading were prepared by applying various dosages of pyrrole, specifically 0, 0.25, and 0.50, based on the fraction of acrylate monomers. The effect of the in situ incorporated polypyrrole component (having the nature of submicron composite polypyrrole-coated polyacrylate latex particles) on the physico-mechanical properties and chemical resistance of the resulting heterogeneous coating films was investigated. The interaction of incorporated polypyrrole and anti-corrosion pigments (see ZnS, Zn3(PO4)2, ZnFe2O4, MoS2, and ZnO) on the corrosion resistance of coatings was evaluated by using the electrochemical linear polarization technique. The polyacrylate latex prepared with the lowest polypyrrole loading (achieved by polymerizing 0.25 wt. % of pyrrole related to acrylic monomers) was found to be the optimum binder for waterborne anticorrosive coatings based on their properties and protective function. Their compatibility with the selected types of pigments was studied for these latex binders. In addition, their influence on the anti-corrosion efficiency of polyacrylate paint films was evaluated using the linear polarization electrochemical technique. For high corrosion resistance, the ZnS and MoS2 pigments, showing compatibility with polyacrylate latices containing the polypyrrole component, proved to be advantageous. Full article
(This article belongs to the Special Issue Advances in Textile-Based Materials and Polymer Composite Coatings)
Show Figures

Figure 1

Back to TopTop