Special Issue "Precipitation: Forecasting and Climate Projections"

A special issue of Climate (ISSN 2225-1154).

Deadline for manuscript submissions: 30 June 2020.

Special Issue Editors

Assist. Prof. Dr. Konstantia (Dia) Tolika
E-Mail Website
Guest Editor
Department of Meteorology and Climatology, School of Geology, Aristotle University of Thessaloniki, Thessaloniki, University Campus 54124, Greece
Interests: climatic change; climate models; climatology; dynamical downscaling; statistical downscaling; artificial neural networks; climatic extremes; impacts; atmospheric circulation
Special Issues and Collections in MDPI journals
Assoc. Prof. Ioannis Pytharoulis
E-Mail Website
Guest Editor
Department of Meteorology and Climatology, School of Geology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
Interests: synoptic and dynamic meteorology; numerical weather prediction; atmospheric model evaluation; operational weather forecasting; land/sea–air interaction; extreme weather events; African Easterly Waves; Mediterranean tropical-like cyclones
Special Issues and Collections in MDPI journals

Special Issue Information

Dear Colleagues,

Precipitation is one of the main meteorological and climatological parameters being affected and affecting several aspects of the complex Atmosphere-Earth-Ocean system. The thorough and accurate study of the mechanisms and factors that interact and determine precipitation characteristics (regime, extremes, trends, etc.), as well as its prediction/future simulations on a global and/or regional scale is found to be crucial for humans, ecosystems, environment and life in our planet.

The overarching goal of this Special Issue is to comprise review an original observational, theoretical and modelling studies on forecasting of precipitation at all spatio-temporal scales (from short-term up to seasonal predictions) and climate projections both on a global and regional scale.

Topics of interest may include, but are not limited to, the following:

  • Numerical weather prediction focusing on precipitation, including operational forecasting and evaluation
  • Physical Parameterizations affecting precipitation
  • Sensitivity experiments
  • Climate models (global and regional scale)
  • Present day and future projections on precipitation (mean and extremes)
  • Climate model evaluations

Assist. Prof. Dr. Konstantia (Dia) Tolika
Assoc. Prof. Ioannis Pytharoulis
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Climate is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1000 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Open AccessArticle
Algorithm to Predict the Rainfall Starting Point as a Function of Atmospheric Pressure, Humidity, and Dewpoint
Climate 2019, 7(11), 131; https://doi.org/10.3390/cli7110131 - 12 Nov 2019
Abstract
Forecasting extreme precipitations is one of the main priorities of hydrology in Latin America and the Caribbean (LAC). Flood damage in urban areas increases every year, and is mainly caused by convective precipitations and hurricanes. In addition, hydrometeorological monitoring is limited in most [...] Read more.
Forecasting extreme precipitations is one of the main priorities of hydrology in Latin America and the Caribbean (LAC). Flood damage in urban areas increases every year, and is mainly caused by convective precipitations and hurricanes. In addition, hydrometeorological monitoring is limited in most countries in this region. Therefore, one of the primary challenges in the LAC region the development of a good rainfall forecasting model that can be used in an early warning system (EWS) or a flood early warning system (FEWS). The aim of this study was to provide an effective forecast of short-term rainfall using a set of climatic variables, based on the Clausius–Clapeyron relationship and taking into account that atmospheric water vapor is one of the variables that determine most meteorological phenomena, particularly regarding precipitation. As a consequence, a simple precipitation forecast model was proposed from data monitored at every minute, such as humidity, surface temperature, atmospheric pressure, and dewpoint. With access to a historical database of 1237 storms, the proposed model allows use of the right combination of these variables to make an accurate forecast of the time of storm onset. The results indicate that the proposed methodology was capable of predicting precipitation onset as a function of the atmospheric pressure, humidity, and dewpoint. The synoptic forecast model was implemented as a hydroinformatics tool in the Extreme Precipitation Monitoring Network of the city of Queretaro, Mexico (RedCIAQ). The improved forecasts provided by the proposed methodology are expected to be useful to support disaster warning systems all over Mexico, mainly during hurricanes and flashfloods. Full article
(This article belongs to the Special Issue Precipitation: Forecasting and Climate Projections)
Show Figures

Figure 1

Back to TopTop