Analysis of the Spatio-Temporal Variability of Precipitation and Drought Intensity in an Arid Catchment in South Africa
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Study Area
2.2. The SWAT Hydrological Model
2.2.1. Model Description
2.2.2. Model Inputs
2.2.3. Model Setup and Calibration Approach
2.3. Precipitation Analysis
2.3.1. Testing Normality of Time Series Data
2.3.2. Trend Analysis
2.3.3. The Spatial Variation of Precipitation
2.4. Precipitation Deficit
2.4.1. Aridity Index (AI)
2.4.2. Standardized Precipitation Index (SPI)
3. Results
3.1. Tests of Normality
3.2. Trends of Precipitation
3.3. Spatial Variation of Precipitation
3.4. Indicators of Precipitation Deficit
4. Discussions
4.1. Precipitation Variability
4.2. Evaluation of Precipitation Deficit
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Longobardi, A.; Villani, P. Trend analysis of annual and seasonal rainfall time series in the mediterranean area. Int J. Climatol. 2010, 30, 1538–1546. [Google Scholar] [CrossRef]
- He, M.; Gautam, M. Variability and trends in precipitation, temperature and drought indices in the State of California. Hydrology 2016, 3, 14. [Google Scholar] [CrossRef] [Green Version]
- Donat, M.G.; Lowry, A.L.; Alexander, L.V.; O’Gorman, P.A.; Maher, N. More extreme precipitation in the world’s dry and wet regions. Nat. Clim. Chang. 2016, 6, 508–513. [Google Scholar] [CrossRef]
- Lima, C.A.D.; Palácio, H.A.D.Q.; Andrade, E.M.D.; dos Santos, J.C.; Brasil, P.P. Characteristics of rainfall and erosion under natural conditions of land use in semiarid regions. Rev. Bras. Eng. Agr. Amb. 2013, 17, 1222–1229. [Google Scholar] [CrossRef] [Green Version]
- Javari, M. Trend and homogeneity analysis of precipitation in Iran. Climate 2016, 4, 44. [Google Scholar] [CrossRef]
- Munodawafa, A. The effect of rainfall characteristics and tillage on sheet erosion and maize grain yield in semiarid conditions and granitic sandy soils of Zimbabwe. Appl. Environ. Soil Sci. 2012. [Google Scholar] [CrossRef] [Green Version]
- Botai, C.M.; Botai, J.O.; Muchuru, S.; Ngwana, I. Hydro-meteorological research in South Africa: A review. Water 2015, 7, 1580–1594. [Google Scholar] [CrossRef] [Green Version]
- Grist, J.P.; Nicholson, S.E. A study of the dynamic factors influencing the rainfall variability in the West African Sahel. J. Clim. 2001, 14, 1337–1359. [Google Scholar] [CrossRef]
- Liu, R.; Shen, Z. Temporal-spatial variation and the influence factors of precipitation in Sichuan Province, China. Front. Biol. China 2008, 3, 236–240. [Google Scholar] [CrossRef]
- González, M.H.; Cariaga, M.L.; Skansi, M.D.L.M. Some factors that influence seasonal precipitation in Argentinean Chaco. Adv. Meteorol. 2012. [Google Scholar] [CrossRef]
- Sabziparvar, A.A.; Movahedi, S.; Asakereh, H.; Maryanaji, Z.; Masoodian, S.A. Geographical factors affecting variability of precipitation regime in Iran. Theor. Appl. Climatol. 2015, 120, 367–376. [Google Scholar] [CrossRef]
- Sevruk, B.; Matokova-Sadlonova, K.; Toskano, L. Topography effects on small- scale precipitation variability in the Swiss pre-Alps. IAHS 1998, 248, 51–58. [Google Scholar]
- Tyson, P.D. Rainfall changes over South Africa during the period of meteorological record. In Biogeography and Ecology of Southern Africa; Werger, M.J.A., Ed.; Springer: Dordrecht, The Netherland, 1978; pp. 53–69. [Google Scholar]
- Daly, C. Guidelines for assessing the suitability of spatial climate data sets. Int. J. Climatol. 2006, 26, 707–721. [Google Scholar] [CrossRef]
- Johansson, B.; Chen, D. The influence of wind and topography on precipitation distribution in Sweden: Statistical analysis and modelling. Int. J. Climatol. 2003, 23, 1523–1535. [Google Scholar] [CrossRef]
- Augustine, D.J. Spatial versus temporal variation in precipitation in a semiarid ecosystem. Landsc. Ecol. 2010, 25, 913–925. [Google Scholar] [CrossRef]
- Türkeş, M. Spatial and temporal analysis of annual rainfall variations in Turkey. Int. J. Climatol. 1996, 16, 1057–1076. [Google Scholar] [CrossRef]
- Kidd, C. Satellite rainfall climatology: A review. Int. J. Climatol. 2001, 21, 1041–1066. [Google Scholar] [CrossRef]
- Kidd, C.; Huffman, G. Global precipitation measurement. Meteorol. Appl. 2011, 18, 334–353. [Google Scholar] [CrossRef]
- New, M.; Todd, M.; Hulme, M.; Jones, P. Precipitation measurements and trends in the twentieth century. Int. J. Climatol. 2001, 21, 1889–1922. [Google Scholar] [CrossRef]
- Sene, K. Flash Floods: Forecasting and Warning; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Olsson, J.; Arheimer, B.; Borris, M.; Donnelly, C.; Foster, K.; Nikulin, G.; Persson, M.; Perttu, A.M.; Uvo, C.B.; Viklander, M.; et al. Hydrological climate change impact assessment at small and large scales: Key messages from recent progress in Sweden. Climate 2016, 4, 39. [Google Scholar] [CrossRef]
- Thomas, G.; Henderson-Sellers, A. Global and continental water balance in a GCM. Clim. Change 1992, 20, 251–276. [Google Scholar] [CrossRef]
- Shiklomanov, I.A.; Rodda, J.C. World Water Resources at the Beginning of the Twenty-First Century; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Trenberth, K.E.; Smith, L.; Qian, T.; Dai, A.; Fasullo, J. Estimates of the global water budget and its annual cycle using observational and model data. J. Hydrometeorol. 2007, 8, 758–769. [Google Scholar] [CrossRef]
- Güntner, A.; Stuck, J.; Werth, S.; Döll, P.; Verzano, K.; Merz, B. A global analysis of temporal and spatial variations in continental water storage. Water Resour. Res. 2007. [Google Scholar] [CrossRef]
- McCabe, G.J.; Wolock, D.M. Temporal and spatial variability of the global water balance. Clim. Chang. 2013, 120, 375–387. [Google Scholar] [CrossRef]
- Makurira, H.; Savenije, H.H.G.; Uhlenbrook, S. Modelling field scale water partitioning using on-site observations in sub-Saharan rain-fed agriculture. Hydrol. Earth Syst. Sci. 2010, 14, 627–638. [Google Scholar] [CrossRef] [Green Version]
- Brooks, P.D.; Troch, P.A.; Durcik, M.; Gallo, E.; Schlegel, M. Quantifying regional scale ecosystem response to changes in precipitation: Not all rain is created equal. Water Resour. Res. 2011. [Google Scholar] [CrossRef] [Green Version]
- Herrmann, F.; Keller, L.; Kunkel, R.; Vereecken, H.; Wendland, F. Determination of spatially differentiated water balance components including groundwater recharge on the federal state level–a case study using the mGROWA model in North Rhine- Westphalia (Germany). J. Hydrol. Reg. Stud. 2015, 4, 294–312. [Google Scholar] [CrossRef] [Green Version]
- Barthel, R.; Banzhaf, S. Groundwater and surface water interaction at the regional- scale–a review with focus on regional integrated models. Water Resour Manag. 2016, 30, 1–32. [Google Scholar] [CrossRef] [Green Version]
- Roy, S.S.; Rouault, M. Spatial patterns of seasonal scale trends in extreme hourly precipitation in South Africa. Appl. Geogr. 2013, 39, 151–157. [Google Scholar]
- Department of Environmental Affairs (DEA). Long-Term Adaptation Scenarios Flagship Research Programme (LTAS) for South Africa: Climate Trends and Scenarios; Department of Environmental Affairs: Pretoria, South Africa, 2013.
- Gertenbach, W.D. Rainfall patterns in the Kruger National Park. Koedoe 1980, 23, 35–43. [Google Scholar] [CrossRef] [Green Version]
- Dollar, E.S.J.; Rowntree, K.M. Hydro-climatic trends, sediment sources and geomorphic response in the Bell River catchment, Eastern Cape Drakensberg, South Africa. S. Afr. Geogr. J. 1995, 77, 21–32. [Google Scholar] [CrossRef]
- Reason, C.J.C.; Hachigonta, S.; Phaladi, R.F. Inter-annual variability in rainy season characteristics over the Limpopo region of Southern Africa. Int J. Climatol. 2005, 25, 1835–1853. [Google Scholar] [CrossRef]
- Nel, W.; Sumner, P.D. Trends in rainfall total and variability (1970–2000) along the KwaZulu-Natal Drakensberg foothills. S. Afr. Geogr. J. 2006, 88, 130–137. [Google Scholar] [CrossRef]
- Hewitson, B.C.; Crane, R.G. Consensus between GCM climate change projections with empirical downscaling: Precipitation downscaling over South Africa. Int. J. Climatol. 2006, 26, 1315–1337. [Google Scholar] [CrossRef]
- Mengistu, A.G.; van Rensburg, L.D.; Woyessa, Y.E. Techniques for calibration and validation of SWAT model in data scarce arid and semi-arid catchments in South Africa. J. Hydrol. Reg. Stud. 2019, 25, 100621. [Google Scholar] [CrossRef]
- Neitsch, S.L.; Arnold, J.G.; Kiniry, J.R.; Williams, J.R. Soil and Water Assessment Tool: Theoretical Documentation, Version 2009; Texas Water Resources Institute Technical Report No. 406; Texas A&M University: College Station, TX, USA, 2011. [Google Scholar]
- Arnold, J.G.; Kiniry, J.R.; Srinivasan, R.; Williams, J.R.; Haney, E.B.; Neitsch, S.L. SWAT Input/output Documentation Version 2012; Texas Water Resources Institute: College Station, TX, USA, 2012; p. 654. [Google Scholar]
- Daniel, E.B.; Camp, J.V.; LeBoeuf, E.J.; Penrod, J.R.; Dobbins, J.P.; Abkowitz, M.D. Catchment modeling and its applications: A state-of-the-art review. Open Hydrol. J. 2011, 5, 26–50. [Google Scholar] [CrossRef] [Green Version]
- Parajuli, P.B.; Ouyang, Y. Catchment-scale hydrological modelling methods and applications. In Current Perspectives in Contaminant Hydrology and Water Resources Sustainability; Bradley, P.M., Ed.; InTechOpen: London, UK, 2013; pp. 57–80. ISBN 980-953-307-926-9. [Google Scholar]
- NASA JPL. NASA Shuttle Radar Topography Mission Global 1 Arc Second [Data set]. NASA EOSDIS Land Processes DAAC. 2013. Available online: https://doi.org/10.5067/MEaSUREs/SRTM/SRTMGL1.003 (accessed on 25 January 2020).
- GEOTERRAIMAGE (South Africa). South African National Land Cover Dataset-2013–2014; Department of Environmental Affairs: Pretoria, South Africa, 2015. [Google Scholar]
- Land Type Survey Staff. Land Types of South Africa: Digital Map (1:250,000 Scale) and Soil Inventory Databases; Agricultural Research Council, Institute for Soil, Water and Climate: Pretoria, South Africa, 1972. [Google Scholar]
- Van Zijl, G.M.; Le Roux, P.A.; Turner, D.P. Disaggregation of land types using terrain analysis, expert knowledge and GIS methods. S. Afr. J. Plant. Soil 2013, 30, 123–129. [Google Scholar] [CrossRef]
- Winchell, M.F.; Srinivasan, R.; Di Luzio, M.; Arnold, J. ArcSWAT Interface for SWAT 2012 User’s Guide; Black Land Research and Extension Centre: Temple, TX, USA, 2013. [Google Scholar]
- Bárdossy, A. Calibration of hydrological model parameters for ungauged catchments. Hydrol. Earth Syst. Sci. 2007, 11, 703–710. [Google Scholar] [CrossRef] [Green Version]
- Wheater, H.; Sorooshian, S.; Sharma, K.D. Hydrological Modelling in Arid and Semi-Arid Areas; Cambridge University Press: Cambridge, UK, 2008. [Google Scholar]
- Blöschl, G.; Sivapalan, M.; Savenije, H.; Wagener, T.; Viglione, A. Runoff Prediction in Ungauged Basins: Synthesis Across Processes, Places and Scales; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Mann, H.B. Nonparametric tests against trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods, 4th ed.; Charles Griffin: London, UK, 1975. [Google Scholar]
- Shahid, S. Rainfall variability and the trends of wet and dry periods in Bangladesh. Int. J. Climatol. 2010, 30, 2299–2313. [Google Scholar] [CrossRef]
- Dindang, A.; Taat, A.; Beng, P.E.; Alwi, A.M.; Mandai, A.; Adam, S.M.; Othman, F.; Bima, D.A.; Lah, D. Statistical and trend analysis of rainfall data in Kuching, Sarawak from 1968–2010. J. Med. Microbiol. 2013, 6, 17. [Google Scholar]
- Sen, P.K. Estimates of the regression coefficient based on Kendall’s tau. J. Am. Stat. Assoc 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Adarsh, S.; Reddy, M.J. Trend analysis of rainfall in four meteorological subdivisions of southern India using nonparametric methods and discrete wavelet transforms. Int. J. Climatol. 2015, 35, 1107–1124. [Google Scholar] [CrossRef]
- XLSTAT by Addinsoft. A Complete Statistical Add-in Program for Microsoft Excel, Windows and Mac. Available online: https://www.xlstat.com/en/download (accessed on 10 January 2020).
- UNESCO. Map of the World Distribution of arid Regions: Explanatory Note; UNESCO: Paris, France, 1979. [Google Scholar]
- McKee, T.B.; Doesken, N.J.; Kleist, J. The relationship of drought frequency and duration to time scales. In Proceedings of the 8th Conference on Applied Climatology, Boston, MA, USA, 17–22 January 1993; Volume 17, No. 22. pp. 179–183. [Google Scholar]
- Agnew, C.T. Using the SPI to Identify Drought; University of Nebraska-Lincoln: Lincoln, NE, USA, 2000. [Google Scholar]
- University of Nebraska, National Drought Mitigation Centre. Standardized Precipitation Index (SPI) Program. Available online: https://drought.unl.edu/droughtmonitoring/SPI/SPIProgram.aspx (accessed on 23 December 2019).
- Komuscu, A.U. Using the SPI to Analyse Spatial and Temporal Patterns of Drought in Turkey. Drought Network News (1994–2001). 1999. Available online: https://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1048&context=droughtnetnews (accessed on 25 January 2020).
- Öztuna, D.; Elhan, A.H.; Tüccar, E. Investigation of four different normality tests in terms of type 1 error rate and power under different distributions. Turk. J. Med. Sci 2006, 36, 171–176. [Google Scholar]
- Ghasemi, A.; Zahediasl, S. Normality tests for statistical analysis: A guide for non- statisticians. Int. J. Endocrinol. Metab. 2012, 10, 486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Council for Scientific and Industrial Research (CSIR). A CSIR Perspective on Water in South Africa–2010. CSIR/NRE/PW/IR/2011/0012/A; CSIR: Pretoria, South Africa, 2010; ISBN 978-0-7988-5595-2. [Google Scholar]
- Colvin, C.; Muruven, D.; Lindley, D.; Gordon, H.; Schachtschneider, K. Water Facts and Futures: Rethinking South Africa’s Water Future; WWF-SA: Pretoria, South Africa, 2016; pp. 2–96. [Google Scholar]
- Botai, C.M.; Botai, J.O.; Adeola, A.M. Spatial distribution of temporal precipitation contrasts in South Africa. S. Afr. J. Sci. 2018, 114, 70–78. [Google Scholar] [CrossRef]
- Richard, Y.; Fauchereau, N.; Poccard, I.; Rouault, M.; Trzaska, S. 20th century droughts in Southern Africa: Spatial and temporal variability, teleconnections with oceanic and atmospheric conditions. Int. J. Climatol. 2001, 21, 873–885. [Google Scholar] [CrossRef]
- Rouault, M.; Richard, Y. Intensity and spatial extension of drought in South Africa at different time scales. Water SA 2003, 29, 489–500. [Google Scholar] [CrossRef] [Green Version]
- Kane, R.P. Periodicities, ENSO effects and trends of some South African rainfall series: An update. S. Afr. J. Sci. 2009, 105, 199–207. [Google Scholar] [CrossRef] [Green Version]
- MacKellar, N.; New, M.; Jack, C. Observed and modelled trends in rainfall and temperature for South Africa: 1960–2010. S. Afr. J. Sci. 2014, 110, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Davis, C.L.; Timm Hoffman, M.; Roberts, W. Recent trends in the climate of Namaqualand, a megadiverse arid region of South Africa. S. Afr. J. Sci. 2016, 112, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Kruger, A.C.; Nxumalo, M.P. Historical rainfall trends in South Africa: 1921–2015. Water SA 2017, 43, 285–297. [Google Scholar] [CrossRef] [Green Version]
- Tfwala, C.M.; van Rensburg, L.D.; Schall, R.; Dlamini, P. Drought dynamics and inter-annual rainfall variability on the Ghaap plateau, South Africa, 1918–2014. Phys. Chem. Earth 2018, 107, 1–7. [Google Scholar] [CrossRef]
- Hoffman, M.T.; Carrick, P.J.; Gillson, L.; West, A.G. Drought, climate change and vegetation response in the succulent Karoo, South Africa. S. Afr. J. Sci. 2009, 105, 54–60. [Google Scholar] [CrossRef]
- World Meteorological Organization (WMO). Standardized Precipitation Index User Guide; World Meteorological Organization (WMO): Geneva, Switzerland, 2012; ISBN 978-92-63-11091-6. [Google Scholar]
- Zargar, A.; Sadiq, R.; Naser, B.; Khan, F.I. A review of drought indices. Environ. Rev. 2011, 19, 333–349. [Google Scholar] [CrossRef]
No. | Station Name | Longitude (S) | Latitude (E) | Elevation (m) * | Data Source ** |
---|---|---|---|---|---|
1 | Olifantshoek | −27.950 | 22.733 | 1341 | ARC_ISCW and SAWS |
2 | Onder-Ongeluk | −28.683 | 23.033 | 1311 | ARC_ISCW |
3 | Roodemanskloof | −28.583 | 22.600 | 1204 | ARC_ISCW |
4 | VaalWater | −28.733 | 22.800 | 1109 | ARC_ISCW |
5 | Marydale | −29.324 | 22.246 | 928 | ARC_ISCW |
6 | Saalskop | −28.760 | 21.847 | 861 | ARC_ISCW |
7 | Postmasburg | −28.345 | 23.079 | 1321 | SAWS |
8 | Woolharkop | −28.400 | 22.859 | 1221 | ARC_ISCW and SAWS |
9 | Aucampsrus | −28.275 | 22.962 | 1293 | ARC_ISCW and SAWS |
No. | Aridity Class | Ranges of Values |
---|---|---|
1 | Hyper-arid | AI < 0.03 |
2 | Arid | 0.03 < AI < 0.20 |
3 | Semi-arid | 0.20 < AI < 0.50 |
4 | Sub-humid | 0.50 < AI < 0.75 |
5 | Humid | AI > 0.75 |
No. | SPI Value | Drought Category |
---|---|---|
1 | 0 to −0.99 | Mild drought |
2 | −1.0 to −1.49 | Moderate drought |
3 | −1.5 to −1.99 | Severe drought |
4 | <=−2.0 | Extreme drought |
Variable | Observations | Minimum | Maximum | Mean | Std. Deviation | Shapiro–Wilk Test | |
---|---|---|---|---|---|---|---|
W | p-Value | ||||||
Annual Precipitation | 38 | 165.17 | 415.08 | 277.16 | 59.52 | 0.9887 | 0.8829 |
Monthly Precipitation | 467 | 0 | 113.82 | 22.98 | 19.30 | 0.9624 | <0.0001 |
Parameters | Annual Precipitation | Monthly Precipitation |
---|---|---|
Kendall’s tau | −0.149 | −0.061 |
S stat | −105 | −6619 |
Var(S) | 6327 | 11352277 |
p-value | 0.191 | 0.05 |
Sen’s slope | −1.355 | −0.011 |
Parameters | 1-Month SPI | 3-Month SPI | 6-Month SPI | 9-Month SPI | 12-Month SPI |
---|---|---|---|---|---|
Kendall’s tau | −0.0251 | −0.0736 | −0.0792 | −0.0837 | −0.0933 |
S | −2739 | −7975 | −8465 | −8832 | −9723 |
Var(S) | 11425577 | 11279892 | 11063684 | 10850226 | 10639550 |
p-value | 0.4179 | 0.0176 | 0.0109 | 0.0073 | 0.0029 |
Sen’s slope | −0.0002 | −0.0007 | −0.0006 | −0.0006 | −0.0007 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mengistu, A.G.; Tesfuhuney, W.A.; Woyessa, Y.E.; van Rensburg, L.D. Analysis of the Spatio-Temporal Variability of Precipitation and Drought Intensity in an Arid Catchment in South Africa. Climate 2020, 8, 70. https://doi.org/10.3390/cli8060070
Mengistu AG, Tesfuhuney WA, Woyessa YE, van Rensburg LD. Analysis of the Spatio-Temporal Variability of Precipitation and Drought Intensity in an Arid Catchment in South Africa. Climate. 2020; 8(6):70. https://doi.org/10.3390/cli8060070
Chicago/Turabian StyleMengistu, Achamyeleh G., Weldemichael A. Tesfuhuney, Yali E. Woyessa, and Leon D. van Rensburg. 2020. "Analysis of the Spatio-Temporal Variability of Precipitation and Drought Intensity in an Arid Catchment in South Africa" Climate 8, no. 6: 70. https://doi.org/10.3390/cli8060070
APA StyleMengistu, A. G., Tesfuhuney, W. A., Woyessa, Y. E., & van Rensburg, L. D. (2020). Analysis of the Spatio-Temporal Variability of Precipitation and Drought Intensity in an Arid Catchment in South Africa. Climate, 8(6), 70. https://doi.org/10.3390/cli8060070