Structural Performance and Damage Assessment of Reinforced Concrete Structures Exposed to High Strain Rate Loads

A special issue of Buildings (ISSN 2075-5309). This special issue belongs to the section "Building Structures".

Deadline for manuscript submissions: closed (30 April 2025) | Viewed by 5539

Special Issue Editors


E-Mail Website
Guest Editor
School of Architecture & Civil Engineering, Shenyang University of Technology, Shenyang 110870, China
Interests: control systems; structural systems

E-Mail Website
Guest Editor
Civil and Structural Engineering, Shenyang University of Technology, Shenyang 110178, China
Interests: structural engineering; blast and impact loading; strengthening; damage assessment; finite element method
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Reinforced concrete (RC) structures might subject to severe impulsive loadings due to shock wave, blast wave or direct impact in their service life. Many impact and explosion incidents caused significant structural damages, which in turn generates huge amount of economic loss, and sometimes claimed many lives. Moreover, these incidents always induce significant psychological impact on the general societies. In response to threats from explosion and impact loads for human and infrastructure protection, the development of various impact and blast resistant design guidelines and scientific research has recently become a priority of many governments worldwide.

Therefore, the main aim of this Special Issue is Structural performance and damage assessment of reinforced concrete structures exposed to high strain rate loads. Topics include but are not limited to:

  • Blast and impact loading;
  • Finite element modeling;
  • Damage assessment;
  • Strain-rate effect;
  • Structural strengthening;
  • Structural dynamics;
  • Protective structures;
  • Structural response.

Prof. Dr. Chunwei Zhang
Dr. Masoud Abedini
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Buildings is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • blast and impact loading
  • finite element modeling
  • damage assessment
  • strain-rate effect
  • structural strengthening
  • structural dynamics
  • protective structures
  • structural response

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

13 pages, 6324 KiB  
Article
Experimental Comparison of the Performance of Shear Frame with TLD and TLCD Under Harmonic Ground Motion
by Yunus Emre Kebeli, Ersin Aydın, Baki Öztürk and Hüseyin Çetin
Buildings 2024, 14(12), 3843; https://doi.org/10.3390/buildings14123843 - 30 Nov 2024
Cited by 1 | Viewed by 923
Abstract
Today, various systems are used to reduce vibrations in civil engineering structures. Among these systems, tuned liquid dampers are the preferred passive systems due to their ability to be designed in different geometries, their low cost, their ease of installation, and their low [...] Read more.
Today, various systems are used to reduce vibrations in civil engineering structures. Among these systems, tuned liquid dampers are the preferred passive systems due to their ability to be designed in different geometries, their low cost, their ease of installation, and their low maintenance costs. This study examines the effectiveness of tuned liquid dampers (TLD) and tuned liquid column dampers (TLCD) under identical geometric conditions and harmonic ground motion to assess which is more efficient in controlling the behavior of a three-storey steel shear frame model equipped with these systems. A small-scale, three-storey shear frame model placed on a uniaxial shaking table was subjected to harmonic motion with a 5 mm amplitude, 1.4 Hz frequency, and 10 cycles. The chosen frequency aligns with the resonance frequency of the undamped building model’s first mode. Both TLD and TLCD tanks, positioned atop the structure, share a geometry of 30 cm in length and 10 cm in width, with variable liquid heights of 5, 10, 15, and 20 cm. Mounting TLD and TLCD models with four different liquid heights on the undamped model resulted in nine distinct setups. In this designed scenario, the TLDs and TLCDs on the undamped shear frame were compared according to liquid heights at rest. To identify the best-performing system based on liquid height, response displacement–frequency graphs were generated for all models within a frequency range of 0.5–2.5 Hz, and damping ratios were calculated using the half-power bandwidth method. Additionally, harmonic ground motion experiments at the resonance frequency compared both acceleration and displacement values over time for damped and undamped models. Peak acceleration and displacement values on each floor were also analyzed. The results highlight which system proves more effective based on damping ratio, acceleration, and displacement values under equivalent conditions. Full article
Show Figures

Figure 1

16 pages, 5687 KiB  
Article
The Effect of Protective Barriers on the Dynamic Response of Underground Structures
by Behnam Mobaraki and Mohammad Vaghefi
Buildings 2024, 14(12), 3764; https://doi.org/10.3390/buildings14123764 - 26 Nov 2024
Cited by 8 | Viewed by 898
Abstract
Engineers have dedicated considerable attention over the past ten years to studying the influences of dynamic loads caused by both intentional and unintentional events on infrastructures. As a result, determining how buried structures react to explosions and enhancing their security against blast loads [...] Read more.
Engineers have dedicated considerable attention over the past ten years to studying the influences of dynamic loads caused by both intentional and unintentional events on infrastructures. As a result, determining how buried structures react to explosions and enhancing their security against blast loads have become crucial subjects in defensive engineering. To achieve this goal, constructing a protective barrier, which is known as a blast wall, in front of structures can be an effective measure. This research focused on examining the impact of a protective barrier on the response of a box-shaped tunnel located in Kobe, Japan, using a comprehensive numerical approach. The results revealed that incorporating a barrier with widths of either 1 m or 2 m resulted in a significant reduction in peak pressure. Specifically, the use of a 1 m wide barrier resulted in a 77% decrease, while a 2 m wide barrier achieved an even greater reduction of 84%. Additionally, it was observed that minimizing the distance between the barrier and the explosion point, as well as increasing the width of the barrier, resulted in reduced peak pressure throughout all sections of the tunnel. Full article
Show Figures

Figure 1

27 pages, 18189 KiB  
Article
Blast-Resistant Design of Reinforced Concrete Slabs with Auxetic-Shaped Reinforcement Layout
by Oğuz Kağan Genç, Zhengyi Kong, Behrooz Keshtegar and Duc-Kien Thai
Buildings 2024, 14(11), 3392; https://doi.org/10.3390/buildings14113392 - 25 Oct 2024
Viewed by 1839
Abstract
This paper presents a numerical study of a blast-resistant design of reinforced concrete panels with a novel auxetic reinforcement layout inspired by auxetic materials, which have a negative Poisson’s ratio, i.e., shrink under compression and expand under tension. A series of two-way supported [...] Read more.
This paper presents a numerical study of a blast-resistant design of reinforced concrete panels with a novel auxetic reinforcement layout inspired by auxetic materials, which have a negative Poisson’s ratio, i.e., shrink under compression and expand under tension. A series of two-way supported panels reinforced with re-entrant auxetic-shaped rebars were numerically tested under a TNT explosion. The high-fidelity multi-physics explicit solver of LS-DYNA was utilized to analyze the efficiency of the proposed design. Firstly, the incident pressure of a TNT explosion data and the structural response of a conventional reinforced concrete panel under a TNT explosion were successfully validated by comparing with the experimental and empirical results. Secondly, the blast-resistant capacity of the proposed model was evaluated in comparison to two different conventional designs. Moreover, a parametric study was carried out to reveal the driving parameters of the newly proposed auxetic-shaped reinforcement design. It has been proved that the proposed auxetic reinforcement layout significantly reduces the spalling radius and increases the energy absorption capacity of panels. As a result of the parametric study, the increased reinforcement volume ratio was ineffective on the spalling radius, although the cell size of auxetic reinforcement was found to be quite effective for the blast-resistant design of concrete panels. Overall, the proposed re-entrant auxetic reinforced panel performed far better than conventional designs under blast load. With the recent developments in 3D printing technology, the proposed auxetic reinforcement layout is a strong candidate to deal with blast-resistant designs of concrete panels. Full article
Show Figures

Figure 1

16 pages, 4130 KiB  
Article
Crack Detection of Curved Surface Structure Based on Multi-Image Stitching Method
by Dashun Cui and Chunwei Zhang
Buildings 2024, 14(6), 1657; https://doi.org/10.3390/buildings14061657 - 4 Jun 2024
Cited by 2 | Viewed by 1239
Abstract
The crack detection method based on image processing has been a new achievement in the field of civil engineering inspection in recent years. Column piers are generally used in bridge structures. When a digital camera collects cracks on the pier surface, the loss [...] Read more.
The crack detection method based on image processing has been a new achievement in the field of civil engineering inspection in recent years. Column piers are generally used in bridge structures. When a digital camera collects cracks on the pier surface, the loss of crack dimension information leads to errors in crack detection results. In this paper, an image stitching method based on Speed-Up Robust Features (SURFs) is adopted to stitch the surface crack images captured from different angles into a complete crack image to improve the accuracy of the crack detection method based on image processing in curved structures. Based on the proposed method, simulated crack tests of vertical, inclined, and transverse cracks on five different structural surfaces were conducted. The results showed that the influence of structural curvature on the measurement results of vertical cracks is very small and can be ignored. Nevertheless, the loss of depth information at both ends of curved cracks will lead to errors in crack measurement outcomes, and the factors that affect the precision of crack detection include the curvature of the surface and the length of the crack. Compared with inclined cracks, the structural curvature significantly influences the measurement results of transverse cracks, especially the length measurement results of transverse cracks. The image stitching method can effectively reduce the errors caused by the structural curved surface, and the stitching effect of three images is better than that of two images. Full article
Show Figures

Figure 1

Back to TopTop