Engineered Analysis of Tissue Mechanics and Blood Flow for Cardiovascular Host-Device Interaction

A special issue of Bioengineering (ISSN 2306-5354). This special issue belongs to the section "Biomedical Engineering and Biomaterials".

Deadline for manuscript submissions: 31 August 2025 | Viewed by 2607

Special Issue Editor


E-Mail Website
Guest Editor
Department of Mechanical Engineering, San Diego State University, San Diego, CA 92182-1323, USA
Interests: bioengineering; medical device design; heart failure; mechanical circulatory support; LVAD therapy and blood flow

Special Issue Information

Dear Colleagues,

The dynamic balance of forces in the cardiovascular system may be dramatically altered by medical devices, manifesting as clinical complications that reflect the challenges of hemocompatibility. In this Special Issue, experimental and computational strategies for understanding the bidirectional interplay between the host circulation and implanted devices will be explored, utilizing the tools of engineering to connect the biomechanics to the biology.

Dr. Karen May-Newman
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Bioengineering is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • solid–fluid mechanics
  • stress
  • strain
  • shear
  • flow
  • thrombus formation
  • hemocompatibility
  • medical device

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

12 pages, 4365 KiB  
Article
Increased VA-ECMO Pump Speed Reduces Left Atrial Pressure: Insights from a Novel Biventricular Heart Model
by Anirudhan Kasavaraj, Christian Said, Laurence Antony Boss, Gabriel Matus Vazquez, Michael Stevens, Jacky Jiang, Audrey Adji, Christopher Hayward and Pankaj Jain
Bioengineering 2025, 12(3), 237; https://doi.org/10.3390/bioengineering12030237 - 26 Feb 2025
Viewed by 843
Abstract
Background and aims: The effect of veno-arterial extracorporeal membrane oxygenation (VA-ECMO) on left atrial pressure (LAP) in the presence of interventricular interaction and the Frank–Starling mechanism is unknown. We developed and validated a mock circulatory loop (MCL) incorporating a novel, 3D-printed biventricular heart [...] Read more.
Background and aims: The effect of veno-arterial extracorporeal membrane oxygenation (VA-ECMO) on left atrial pressure (LAP) in the presence of interventricular interaction and the Frank–Starling mechanism is unknown. We developed and validated a mock circulatory loop (MCL) incorporating a novel, 3D-printed biventricular heart model and Frank–Starling algorithm, and used this model to assess the determinants of LAP during VA-ECMO support. Methods: The MCL was designed to allow a separate ventricle or biventricular configuration, with or without an active Frank–Starling mechanism. The biventricular model with Frank–Starling mechanism was validated in terms of (1) the presence and degree of ventricular interactions; (2) its ability to simulate Frank–Starling physiology; and (3) its capacity to simulate normal and pathological cardiac states. In the separate ventricle and biventricular with Frank–Starling models, we assessed the effect on LAP of changes in mean aortic pressure (mAoP), ECMO pump speed, LV contractility and ECMO return flow direction. Results: In the biventricular configuration, clamping RA inflow decreased RAP, with a concurrent decrease in LAP, consistent with direct ventricular interaction. With a programmed Frank–Starling mechanism, decreasing RAP was associated with a significant reduction in both LV outflow and LV end-systolic pressure. In the biventricular model with a Frank–Starling algorithm, the MCL was able to reproduce pre-defined normal and pathological cardiac output, and arterial and ventricular pressures. Increasing aortic pressure caused a linear increase in LAP in the separate ventricle model, which was attenuated in the biventricular model with Frank–Starling mechanism. Increasing ECMO pump speed caused no change in LAP in the separate ventricle model (p = 0.75), but significantly decreased LAP in the biventricular model with Frank–Starling mechanism (p = 0.039), with stabilization of LAP at the highest pump speeds. Changing the direction of VA-ECMO return flow did not affect LAP in either the separate ventricle (p = 0.91) or biventricular model with Frank–Starling mechanism (p = 0.76). Conclusions: Interventricular interactions and the Frank–Starling mechanism can be simulated in a physical, biventricular MCL. In their presence, the effects of VA-ECMO on LAP are mitigated, with LAP reduction and stabilization at maximal VA-ECMO speeds. Full article
Show Figures

Figure 1

9 pages, 2282 KiB  
Article
Computational Fluid Dynamic Optimization of Micropatterned Surfaces: Towards Biofunctionalization of Artificial Organs
by Wenxuan He, Aminat M. Ibrahim, Abhishek Karmakar, Shivani Tuli, Jonathan T. Butcher and James F. Antaki
Bioengineering 2024, 11(11), 1092; https://doi.org/10.3390/bioengineering11111092 - 30 Oct 2024
Viewed by 1179
Abstract
Modifying surface topography to prevent surface-induced thrombosis in cardiovascular implants allows endothelialization, which is the natural thrombo-resistance of blood-contacting surfaces, and is deemed to be the only long-term solution for hemocompatible materials. We adapted a simulation framework to predict platelet deposition on a [...] Read more.
Modifying surface topography to prevent surface-induced thrombosis in cardiovascular implants allows endothelialization, which is the natural thrombo-resistance of blood-contacting surfaces, and is deemed to be the only long-term solution for hemocompatible materials. We adapted a simulation framework to predict platelet deposition on a modified surface and developed an optimization strategy to promote endothelial retention and limit platelet deposition. Under supraphysiological bulk shear stress, a maximum of 79% linear coverage was achieved. This study concludes that the addition of microtrenches promotes endothelial retention and can be improved through the optimal selection of geometric parameters. Full article
Show Figures

Figure 1

Back to TopTop