Special Issue "Emerging Technologies for Next Generation Applied Science System including Selected Papers from ICGHIT 2021"

A special issue of Applied Sciences (ISSN 2076-3417).

Deadline for manuscript submissions: closed (31 August 2021).

Special Issue Editor

Special Issue Information

Dear Colleagues,

The 9th International Conference on Green and Human Information Technology (ICGHIT 2021) will be held on 13–15 January, 2021, in Jeju Island, Korea (http://icghit.org/ ). The 9th International Conference on Green and Human Information Technology is a unique global conference for researchers, industry professionals, and academics who are interested in the latest developments in green and human information technology. The goal of ICGHIT is to form a platform to seek the advancement of green technology and human-related IT in an interdisciplinary manner. The main topics of the conference are green information technology, communication and IoT, computer and network security, multimedia and signal processing, control and intelligent systems, and SW/HW design, architecture, and development. Centering on the main topics, ICGHIT will provide an exciting program: hands-on experience-based tutorial sessions and special sessions covering research issues and directions with applications from both theoretical and practical viewpoints. The conference will also include plenary sessions, technical sessions, and workshops with special sessions. Highly qualified papers selected from ICGHIT 2021 will be invited to this Special Issue for publication. However, the Special Issue also welcomes submissions from researchers which fit into the scope as shown below. The topics of this Special Issue include but are not limited to: green information technology; green technology and energy saving; green computing and green IT convergence and applications; energy harvest-based communications and networking; technologies for network sustainability communications and networks for IoT and 5G and beyond; communications and networks for massive IoT and 5G; optical and visual light communication; ad-hoc and sensor networks; M2M/IoT and ubiquitous computing; NFV, SDN, ICN, network slicing; AI and ML-based technologies; computer and network security; block-chain-based networking and applications; distributed PKI; applied cryptography; security in big data and cloud computing; security for future internet architecture (SDN, ICN, etc.); control and intelligent systems; automatic control and neural and fuzzy networks; artificial intelligence and HCI; intelligent robotics and transportation and HRI; brain science and bioengineering networks; SW/HW design, architecture, and applications; architecture and protocols; sustainable sensor networks; information-centric sensor networks; blockchain-based secure sensor networks; AI-based self-evolving sensor networks; sensor/RFID circuit design; system on chip (SoC); IC system for communication.

Dr. Byung-Seo Kim
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Applied Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2000 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • green information technology
  • communication and IoT
  • computer and network security
  • multimedia and signal processing
  • control and intelligent systems
  • SW/HW design
  • architecture and development

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Article
Secure Outsourced Blockchain-Based Medical Data Sharing System Using Proxy Re-Encryption
Appl. Sci. 2021, 11(20), 9422; https://doi.org/10.3390/app11209422 - 11 Oct 2021
Viewed by 205
Abstract
The security and privacy of electronic health records (EHRs) have received considerable attention from healthcare workers and researchers. To ensure security, various encryption and decryption schemes as well as key management protocols have been developed. However, owing to sharing and scalability issues, additional [...] Read more.
The security and privacy of electronic health records (EHRs) have received considerable attention from healthcare workers and researchers. To ensure security, various encryption and decryption schemes as well as key management protocols have been developed. However, owing to sharing and scalability issues, additional security technologies have been proposed. Nonetheless, these technologies cause other problems, such as efficiency issues. Blockchain-based EHR management systems have been proposed to overcome computational overhead. However, because most blockchain systems are installed by outsourcing companies, EHRs may be leaked to the company. Hence, we herein propose a blockchain-based EHR management scheme with proxy re-encryption. In this scheme, we set a proxy server that re-encrypts the ciphertext between file servers, thereby solving EHR sharing issues. Furthermore, because the server is separated from the blockchain system, the outsourcing company cannot manipulate the server or access the records. In addition, the blockchain assists in access control by using smart contracts, thereby enabling secure and efficient EHR sharing. By performing security analysis, we prove that our proposed scheme solves the aforementioned security problems. In addition, we experimentally demonstrate the efficient operation of the proposed system. Full article
Show Figures

Figure 1

Article
Development of Cybersecurity Technology and Algorithm Based on Quantum Computing
Appl. Sci. 2021, 11(19), 9085; https://doi.org/10.3390/app11199085 - 29 Sep 2021
Viewed by 237
Abstract
Many hacking incidents are linked to work files because most companies work with them. However, a variety of file encryption and decryption methods have been proposed. Existing file encryption/decryption technologies are under threat as hacking technologies advance, necessitating the development of stronger encryption [...] Read more.
Many hacking incidents are linked to work files because most companies work with them. However, a variety of file encryption and decryption methods have been proposed. Existing file encryption/decryption technologies are under threat as hacking technologies advance, necessitating the development of stronger encryption algorithms. Therefore, in this study, we propose a modified advanced encryption standard (AES) algorithm and use quantum computing to encrypt/decrypt AES image files. Because the shift is regular during the AES Shift Row procedure, the change technique led the shift to become irregular when using quantum random walk. Computing resources and speeds were simulated using IBM Qiskit quantum simulators for performance evaluation, whereas encryption performance was assessed using number of pixels change rate (NPCR) and unified average changing intensity (UACI). Full article
Show Figures

Figure 1

Article
Intelligent Stretch Optimization in Information Centric Networking-Based Tactile Internet Applications
Appl. Sci. 2021, 11(16), 7351; https://doi.org/10.3390/app11167351 - 10 Aug 2021
Cited by 1 | Viewed by 432
Abstract
The fifth-generation (5G) mobile network services are currently being made available for different use case scenarios like enhanced mobile broadband, ultra-reliable and low latency communication, and massive machine-type communication. The ever-increasing data requests from the users have shifted the communication paradigm to be [...] Read more.
The fifth-generation (5G) mobile network services are currently being made available for different use case scenarios like enhanced mobile broadband, ultra-reliable and low latency communication, and massive machine-type communication. The ever-increasing data requests from the users have shifted the communication paradigm to be based on the type of the requested data content or the so-called information-centric networking (ICN). The ICN primarily aims to enhance the performance of the network infrastructure in terms of the stretch to opt for the best routing path. Reduction in stretch merely reduces the end-to-end (E2E) latency to ensure the requirements of the 5G-enabled tactile internet (TI) services. The foremost challenge tackled by the ICN-based system is to minimize the stretch while selecting an optimal routing path. Therefore, in this work, a reinforcement learning-based intelligent stretch optimization (ISO) strategy has been proposed to reduce stretch and obtain an optimal routing path in ICN-based systems for the realization of 5G-enabled TI services. A Q-learning algorithm is utilized to explore and exploit the different routing paths within the ICN infrastructure. The problem is designed as a Markov decision process and solved with the help of the Q-learning algorithm. The simulation results indicate that the proposed strategy finds the optimal routing path for the delay-sensitive haptic-driven services of 5G-enabled TI based upon their stretch profile over ICN, such as the augmented reality /virtual reality applications. Moreover, we compare and evaluate the simulation results of propsoed ISO strategy with random routing strategy and history aware routing protocol (HARP). The proposed ISO strategy reduces 33.33% and 33.69% delay as compared to random routing and HARP, respectively. Thus, the proposed strategy suggests an optimal routing path with lesser stretch to minimize the E2E latency. Full article
Show Figures

Figure 1

Article
OPMSS: Optimal Producer Mobility Support Solution for Named Data Networking
Appl. Sci. 2021, 11(9), 4064; https://doi.org/10.3390/app11094064 - 29 Apr 2021
Viewed by 379
Abstract
Named data networking (NDN) is designed as a clean-slate Internet architecture to replace the current IP Internet architecture. The named data networking was proposed to offer vast advantages, especially with the advent of new content distributions in IoT, 5G and vehicular networking. However, [...] Read more.
Named data networking (NDN) is designed as a clean-slate Internet architecture to replace the current IP Internet architecture. The named data networking was proposed to offer vast advantages, especially with the advent of new content distributions in IoT, 5G and vehicular networking. However, the architecture is still facing challenges for managing content producer mobility. Despite the efforts of many researchers that curtailed the high handoff latency and signaling overhead, there are still some prominent challenges, such as non-optimal routing path, long delay for data delivery and unnecessary interest packet losses. This paper proposed a solution to minimize unnecessary interest packet losses, delay and provide data path optimization when the mobile producer relocates by using mobility update, broadcasting and best route strategies. The proposed solution is implemented, evaluated and benchmarked with an existing Kite solution. The performance analysis result revealed that our proposed Optimal Producer Mobility Support Solution (OPMSS) minimizes the number of unnecessary interest packets lost on average by 30%, and an average delay of 25% to 30%, with almost equal and acceptable signaling overhead costs. Furthermore, it provides a better data packet delivery route than the Kite solution. Full article
Show Figures

Figure 1

Back to TopTop