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Abstract: Many hacking incidents are linked to work files because most companies work with them.
However, a variety of file encryption and decryption methods have been proposed. Existing file
encryption/decryption technologies are under threat as hacking technologies advance, necessitating
the development of stronger encryption algorithms. Therefore, in this study, we propose a modified
advanced encryption standard (AES) algorithm and use quantum computing to encrypt/decrypt AES
image files. Because the shift is regular during the AES Shift Row procedure, the change technique
led the shift to become irregular when using quantum random walk. Computing resources and
speeds were simulated using IBM Qiskit quantum simulators for performance evaluation, whereas
encryption performance was assessed using number of pixels change rate (NPCR) and unified
average changing intensity (UACI).
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1. Introduction

Corporate data are frequently stored as files, and encryption techniques have long
been required to ensure security. However, as brute-force attacks get more sophisticated,
many existing encryption methods are at risk, necessitating the development of a new
encryption algorithm.

Therefore, in this study, we used the advanced encryption standard (AES) algorithm,
which is a well-known brute force attack-resistant algorithm for file encryption/decryption.
In addition, we uniquely used quantum computing to improve the performance of tra-
ditional file encryption and decryption algorithms. Quantum computing is expected to
take existing information and communication technologies to new levels based on fast
computing power and strong security.

We show that the AES algorithm can be implemented using quantum gates and
propose that AES be implemented with random number generation. Shift Row moves each
data to match in the traditional AES encryption process. Because decryption can reverse
the order, this can be anticipated in order. Thus, we modify the shift row’s performance to
move randomly, making the order in decryption difficult to predict.

However, knowing the algorithm can predict random numbers in the case of pseudo-
random numbers. Therefore, in this paper, we modify the AES algorithm using quantum
random walk, which generates random numbers that are unexpected owing to the charac-
teristics of qubits, and compare them to the AES algorithm using pseudorandom numbers.

We target the existing file encryption system [1] in Figure 1, where our quantum-gate-
based AES in progress can be applied. The file monitoring system operates in real-time.
The file encryption system encrypts the file when an access event (read, write, etc.) to a file
is detected. The AES is a symmetric key algorithm; hence, the user decrypts the key used
for the encryption and accesses the file. The file restore system restores the file, even if a
file is damaged due to a disaster or hacking. It also prevents secondary damage, where
internal information is leaked through the encryption system, even if the file is leaked.
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Figure 1. Architecture of the existing file encryption system. 

The paper is organized as follows: Section 2 describes the architecture of the AES 
algorithm. Section 3 introduces quantum computing and quantum gate. Section 4 com-
pares the performances of the classical logic gate and the quantum gate used in the quan-
tum simulation. Section 5 explains how random numbers are generated and proposes al-
gorithms that apply them. Section 6 experiments and compares the proposed algorithms. 
Section 7 describes the conclusion and future work. 

2. Advanced Encryption Standard 
The AES is a symmetric key algorithm that uses the same key during encryption and 

decryption. It can have 128 bits, 192 bits, and 256 bits with encryption keys and consists 
of 10, 12, and 14 rounds running along with the size of the encryption key. 

Figure 2 presents AES-128, with the round number as 10. The Add Round Key op-
eration is performed by Plain Text and Key that were first entered. Nine round transfor-
mations consisting of Sub Byte, Shift Row, Mix Column, and Add Round Key are then 
performed. In Round 10, it finally performs Sub Byte, Shift Row, and Add Round Key 
conversion, except for Mix Column for encryption. Decryption is the opposite process of 
encryption. 

 

Figure 1. Architecture of the existing file encryption system.

The paper is organized as follows: Section 2 describes the architecture of the AES al-
gorithm. Section 3 introduces quantum computing and quantum gate. Section 4 compares
the performances of the classical logic gate and the quantum gate used in the quantum sim-
ulation. Section 5 explains how random numbers are generated and proposes algorithms
that apply them. Section 6 experiments and compares the proposed algorithms. Section 7
describes the conclusion and future work.

2. Advanced Encryption Standard

The AES is a symmetric key algorithm that uses the same key during encryption and
decryption. It can have 128 bits, 192 bits, and 256 bits with encryption keys and consists of
10, 12, and 14 rounds running along with the size of the encryption key.

Figure 2 presents AES-128, with the round number as 10. The Add Round Key opera-
tion is performed by Plain Text and Key that were first entered. Nine round transformations
consisting of Sub Byte, Shift Row, Mix Column, and Add Round Key are then performed.
In Round 10, it finally performs Sub Byte, Shift Row, and Add Round Key conversion,
except for Mix Column for encryption. Decryption is the opposite process of encryption.
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3. Quantum Computing/Quantum Gate
3.1. Quantum Computing and Quantum Simulator

Quantum computing processes information in qubits to use the principles of quan-
tum mechanics. However, the qubit indicating the status of a quantum particle is easily
transformed into a decoherence state by the influence of the external environment; hence,
it should be kept at a cryogenic state to avoid external influences. Equipment used to main-
tain cryogenic conditions is also expensive. Therefore, global IT companies developing
quantum systems provide quantum simulators.

A quantum simulator is a software program that can run and test quantum algorithms
on a classical computer like running quantum algorithms on a quantum computer. In the
future, when quantum computers are commercialized, users will be able to run applications
on them.

3.2. Quantum Bit(Qubit)

Figure 3 shows the shape of the Qubit. A qubit is the smallest unit of information used
in quantum computers. Qubit can have 0 and 1 simultaneously until measurement due to
superposition. In the event of measurement or interference, it will have one value as is the
classical bit. N qubits are represented by a superposition vector in a 2n dimensional Hilbert
space, called an orthonormal basis. For a single qubit, it can be represented as a|0> + b|1>,
where a and b are complex numbers satisfying |a|2 + |b|2 = 1.
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3.3. Quantum Superposition and Quantum Entanglement

Quantum superposition is a state of having multiple possibilities at the same time. This
state exists as a probability until measurement, which allows them to perform operations
as fast as 2Qubit times compared to classical computers. Quantum entanglement is a
phenomenon in which a particle is split into two and placed at a very long distance. When
one side’s state is determined, the other side’s state is also determined. For example,
assume that you put one quantum on Earth and the other one entangled to it in a very
distant universe. If a quantum state on Earth is determined, a quantum in the distant
universe is also determined. Quantum gates are built on these properties, and some
quantum gates can replace classical logic gates.

4. Transforming the Classical AES Algorithm into a Quantum-Gate-Based
AES Algorithm
4.1. AES Algorithm Analysis

The AES consists of several processes (Figure 2).
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4.1.1. Add Round Key

The Add Round Key does the XOR operation of Plain Text and Key. Both Plain Text
and Key must be changed to a matrix to perform an XOR operation, in which case, the
AND operation is used.

4.1.2. Sub Byte

Sub Byte is an operation that replaces data in 1-byte increments and using S-box
tables. The S-box is shown in Figure 4, if the input is 7b (hexadecimal), the result is 21
(hexadecimal).
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4.1.3. Shift Row

As we can see Figure 5, Shift Row performs shift operations differently on a row basis.
Leave the first row. The second row 1 shifts to the left. The third row 2 shifts to the left.
The last row 3 shifts to the left.
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4.1.4. Mix Column

Each byte proceeds with a specific matrix and multiplication operation. It is a multi-
plication of the matrix; hence, addition operations occur and the XOR.

4.1.5. Key Schedule

The AES uses a key schedule to expand a short key into a number of separate round
keys. The key schedule produces the needed round keys from the initial key. In this process,
the Rcon table (Figure 6) is used, and the XOR operation is performed.
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4.1.6. Cipher Text

After completing all the processes in the AES, the matrix must be converted back to a
ciphertext, where the OR operation is used.

4.2. Quantum Gate to Classical Logic Gate Association

As analyzed in Section 4.1, the AND, OR, and XOR operations are performed during
the AES encryption. We tried to implement the required classical logic gate as the quantum
gate to utilize quantum computing. The transformation of each gate is as follows:

4.2.1. Classical AND Gate

The classical AND gate is shown in Figure 7. The classical AND gate can be replaced
with the Toffoli gate.

The Toffoli gate is shown in Figure 8. The Toffoli gate is a gate in which two qubit
states affect one qubit state. In Figure 8, the NOT operation is performed in the third line if
both A and B are |1>.
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Table 1 compares the classical AND gate and the Toffoli gate.

Table 1. AND Gate vs. Toffoli Gate.

Input Output

A B C A B A·B

AND
(classical)

0 0 X X X 0
0 1 X X X 0
1 0 X X X 0
1 1 X X X 1

Toffoli
(quantum)

0 0 0 0 0 0
0 1 0 0 1 0
1 0 0 1 0 0
1 1 0 1 1 1
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4.2.2. Classical OR Gate

The classical OR gate can be made from a combination of NOT and classical AND
gates. This is represented in Figure 9.
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We described the classical AND gate earlier; hence, we will only describe the classical
NOT gate here.

The classical NOT gate is shown in Figure 10. The classical NOT gate can be replaced
by the Pauli-X gate.

The Pauli-X gate is shown in Figure 11. The Pauli-X gate rotates the qubit to the X-axis
and changes it to |0> if the qubit is |1>. It changes the qubit to |1> if it is |0>.
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Table 2 compares the classical NOT gate with the Pauli-X gate.

Table 2. NOT Gate vs. Pauli-X Gate.

Input Output

NOT
(classical)

0 1
1 0

Pauli-X
(quantum)

0 1
1 0

4.2.3. Classical XOR Gate

The classical XOR gate is shown in Figure 12. The classical XOR gate can be replaced
with the controlled-NOT (CNOT) gate.

The CNOT gate is shown in Figure 13. The CNOT gate is where you can see the
entanglement of two qubits. The state of the first qubit affects that of the second qubit. The
CNOT gate performs the NOT operation on B if A is |1>. This is the same as the classical
XOR operation (i.e., if the two bits are the same, the result is 0; if the two bits are different,
the result is 1). The explanation for this is depicted in Table 3.
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Table 3. XOR Gate vs. CNOT Gate.

Input Output

A B A A ⊕ B

XOR
(classical)

0 0 X 0
0 1 X 1
1 0 X 1
1 1 X 0

CNOT
(quantum)

0 0 0 0
0 1 0 1
1 0 1 1
1 1 1 0

4.3. Quantum Computing Programming

Based on Section 4.2, we proceeded herein with Qiskit, a quantum computer platform
developed by IBM [2]. We performed the development through a quantum simulator. Let
us now see how Section 4.2 is applied.

First, we assign a Quantum Resistor to store the qubit and a Classical Register to store
the Classical bit for each bit. The Quantum Register stores all qubits in the form of a list.
The Classical Register stores classical bits. These classical bits can only be used if the qubits
are measured.

Second, we create a quantum circuit to run each register [3]. A quantum circuit is
constructed based on the configured registers. You can also add other registers to the
created quantum circuit and visually identify them, if necessary.

Third, the quantum gate corresponding to each classic logic gate operation is applied
to the quantum circuit. Inputs are assumed to be Input1 = 1101 and Input2 = 0110.

Further, q424, q431, and q442 can be seen in Figures 14–16. They simply mean Qubit
and the numbers (424, 431 and 442) do not have meaning.

4.3.1. Classical AND Gate Using Toffoli Gate

Descriptions 1 to 4 below describe Figure 14.

1. Initialize qubit’s initial state to |0>.
2. Calculate from the last digit (fourth) of the input values. The last digit of Input1

is 1. The last digit of Input2 is 0. That is, qubit_0(q424_0) should be |1>, and
qubit_1(q424_1) should be |0> [4]. Therefore, apply the Pauli-X gate to qubit_1.
Qubit_2(q424_2) must be |0> because it must satisfy the AND operation. The mea-
surement of qubit_2 returns the result of the AND operation.

3. Calculate the third digit of the input values. The third digit of Input1 is 0. The last
digit of Input2 is 1. That is, qubit_3(q424_3) should be |0>, and qubit_4(q424_4)
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should be |1>. Therefore, apply the Pauli-X gate to qubit_4. The measurement then
returns the results of the AND operation.

4. Iterate this process for each digit.
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4.3.2. Classical OR Gate Using Pauli-X and Toffoli Gates

Descriptions 1 to 4 below describe Figure 15.

1. Initialize qubit’s initial state to |0>. However, to implement the classical OR gate,
the NOT operations must be performed on Input1 and Input2. Therefore, apply the
Pauli-X gate to qubit_0 and qubit_1 [4].

2. Calculate from the last digit (fourth) of the input values. The last digit of Input1 is 1,
while that of Input2 is 0; hence, qubit_0 should be |1>, and qubit_1 should be |0>.
Apply the Pauli-X gate to qubit_1.

3. Qubit_2 must be |0> because it must be an AND operation with the Toffoli gate.
However, apply the Toffoli gate to qubit_2 and then the Pauli-X gate considering that
the NOT operation must be performed after the AND operation. The measurement
then returns the OR operation results.

4. Iterate this process for each digit.
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4.3.3. Classical XOR Gate Using the CNOT Gate

Descriptions 1 to 4 below describe Figure 16.

1. Initialize qubit’s initial state to |0>.
2. Calculate from the last digit (fourth) of the input values. The last digit of Input1 is 1,

while that of Input2 is 0; hence, qubit_0 should be |1>, and qubit_1 should be |0>.
Apply the Pauli-X gate to qubit_0 [4].

3. The CNOT gate returns the result value in qubit_1, unlike 4.3.1 and 4.3.2. The XOR
operation results are returned when it performs a measurement after applying the
CNOT gate.

4. Iterate this process for each digit.
Appl. Sci. 2021, 11, x FOR PEER REVIEW 10 of 17 
 

 
Figure 16. Classical XOR gate using the CNOT gate. 

4.3.4. Performance Evaluation 
Multiple file units (e.g., KB, MB, and GB) are used by companies. The AES reads 128 

bits (16 bytes) each; hence, it randomly gives input values repeatedly to mimic the encryp-
tion of multiple files. 

AES-128 reads 16 bytes each and encrypts them, thus it becomes “Iteration = File Size 
(Byte)/16 (Byte).” Therefore, we can see the iteration according to the file size in Table 4. 
The experiment was conducted with AES-128 implemented in Python and Qiskit. The 
time unit was set to minutes. AES-128 in classical computing is implemented in Python 
because Qiskit consists of Python.  

Table 5 shows the performance time for each platform. The performance time 
showed many variances. In the case of Qiskit, it took a long time to perform as much as 
each file size. Therefore, we calculated the number of iterations conducted was equal to 
the file size, based on the time spent per iteration. However, to measure the time taken for 
the performance comparison would be meaningless, because quantum computing was 
executed on a simulation basis. The quantum resource estimation would be a fairer com-
parison. 

Table 6 presents the quantum resource estimation per iteration. “Gate” is the number 
of quantum gates used in the quantum circuit. “Width” is the number of qubits used plus 
the number of classical bits in the quantum circuit. “Depth” is the length of the critical 
path in the quantum circuit. “Qubit” is the number of qubits used in the quantum circuit. 
We plan to investigate a more accurate performance evaluation through quantum re-
source estimation analysis as an ongoing research. 

Table 4. Iteration by file size. 

File Size Byte Iteration 
500 KB 512,000 32,000 
100 MB 104,857,600 6,553,600 

0.5 G 536,870,912 33,554,432 
1 G 1,073,741,824 67,108,864 

Table 5. Performance time. 

File Size Python Qiskit 

Figure 16. Classical XOR gate using the CNOT gate.



Appl. Sci. 2021, 11, 9085 10 of 17

4.3.4. Performance Evaluation

Multiple file units (e.g., KB, MB, and GB) are used by companies. The AES reads
128 bits (16 bytes) each; hence, it randomly gives input values repeatedly to mimic the
encryption of multiple files.

AES-128 reads 16 bytes each and encrypts them, thus it becomes “Iteration = File Size
(Byte)/16 (Byte).” Therefore, we can see the iteration according to the file size in Table 4.
The experiment was conducted with AES-128 implemented in Python and Qiskit. The time
unit was set to minutes. AES-128 in classical computing is implemented in Python because
Qiskit consists of Python.

Table 5 shows the performance time for each platform. The performance time showed
many variances. In the case of Qiskit, it took a long time to perform as much as each
file size. Therefore, we calculated the number of iterations conducted was equal to the
file size, based on the time spent per iteration. However, to measure the time taken
for the performance comparison would be meaningless, because quantum computing
was executed on a simulation basis. The quantum resource estimation would be a fairer
comparison.

Table 6 presents the quantum resource estimation per iteration. “Gate” is the number
of quantum gates used in the quantum circuit. “Width” is the number of qubits used plus
the number of classical bits in the quantum circuit. “Depth” is the length of the critical
path in the quantum circuit. “Qubit” is the number of qubits used in the quantum circuit.
We plan to investigate a more accurate performance evaluation through quantum resource
estimation analysis as an ongoing research.

Table 4. Iteration by file size.

File Size Byte Iteration

500 KB 512,000 32,000
100 MB 104,857,600 6,553,600

0.5 G 536,870,912 33,554,432
1 G 1,073,741,824 67,108,864

Table 5. Performance time.

File Size Python Qiskit

500 KB 0.07 715,968 (estimated)
100 MB 14.12 147,458,110 (estimated)

0.5 G 72.77 739,875,225 (estimated)
1 G 146.73 1,479,750,448 (estimated)

Table 6. Quantum resource estimation per iteration.

Total Resources

Gates 7518
Depth 3452
Width 96
Qubits 64

5. Enhancement of Security

Shift Row is included in the AES algorithm analysis in Section 4.1. The encryption
algorithm determines the number of bytes that should be shifted in each row of a matrix
by a certain number, determined by the encryption algorithm. Anyone can descript Shift
Row (=Inverse Shift Row) since it changes the bytes of each row of the matrix to a given
integer. Because one of the decryption processes, inverse shift row, proceeds in the opposite
direction of the Shift Row process.
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Therefore, in this paper, unlike the existing algorithm, random numbers are generated
so that the decryption method is not easily known, and rows can be moved according to
the generated random numbers. The security of the system was improved by making the
decryption method difficult to predict. We generated random numbers in three ways.

5.1. Linear Congruential Generator

The linear congruential generator is a widely known pseudo-random number genera-
tor. Multiply the value of the pseudo-random by a time, add c, divide by m, and choose
the next pseudo-random. The linear congruential generator is defined in Equation (1).

Xn+1 = aXn + c, mod m (1)

X0 refers to the seed values. The generated random number depends on the seed
value. However, the linear congruential generator has a maximum number of modulate
operations available, and no more periods are available. For example, the maximum period
value for a 64-bit machine is 264.

However, random numbers are generated within that period; hence, the smaller the
period, the narrower the range of the random numbers generated, making it easier to
predict the random numbers. In addition, the linear congruential generator has uniform
random number distributions when expressed in one dimension, but not uniform when
expressed in the n-dimension, consequently resulting in patterns.

For example, let n be 3 and the random numbers generated by the linear congruential
generator be r1, r2, r3, . . . and rn. The following is defined to express the random numbers
generated in three dimensions:

P1 = (r1, r2, r3), P2 = (r4, r5, r6), . . . , Pn = (rn−2, rn−1, rn)

This has the disadvantage of being able to predict, to some extent, the random numbers
generated by the occurring pattern.

5.2. Mersenne Twister

The Mersenne Twister [5] is a pseudo-random number generation algorithm created
by Makoto Matsumoto and Takuji Nishimura. It is used in several programs, including
C++, Excel, MATLAB, Python, and R and generates random numbers using 624 numbers.

The Mersenne Twister uses MT19937 with a random repetition period of 219,937 − 1
and MT19937-64 with 64 bits. This repetition period is the Mersenne prime, which is the
number of the Mersenne prime that is the minority of Mersenne number. As you can see
from Equation (2), the Mersenne number is a number from the power of two minus one.

Mn = 2n − 1 (2)

The random numbers generated by the Mersenne Twister have a uniform distribution
up to 623 dimensions unlike the linear congruential generator. In other words, finding a
pattern is difficult, even if a coordinate corresponding to a 623-dimensional hypercube is
paired with a random number of 623.

However, the Mersenne Twister also has the disadvantage of being able to predict
the current state or the subsequent random numbers with only a finite number of random
numbers knowing their period and range.

5.3. Quantum Random Walk

Quantum random walks are the quantum analog of the classical random walks [6].
Quantum random walks [7] execute coin operator and shift operator. The coin operator
works by performing an arbitrary unitary transformation in the coin space, which creates a
rotation similar to the “coin-flip” in a classical random walk. We use the Hadamard gate
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(Equation (3)) to execute the coin function because it puts qubits in a state of superposition,
allowing for the simulation of a coin-based probability.

H =
1√
2

[
1 1
1 − 1

]
(3)

The shift operator acts with the coin operator, with unitary gates that combine the
probability amplitudes with individual subnodes under each node.

Quantum random walks are studied as continuous- and discrete-time quantum ran-
dom walks. However, we use herein the discrete-time quantum random walk because we
need values to randomize the Shift Row.

The unitary operations in the discrete-time quantum random walk are made of coin
and shift operators U = SC that work in a state space. The total state of the system is defined
by the Hilbert space as follows:

H = Hc ⊗ Hp (4)

where Hc is the coin Hilbert space, and Hp is the position Hilbert space. A coin-flip defines
the direction in which the particle moves. A subsequent position shift operation moves the
particle in the position space. We conducted a quantum random walk on a circular graph
and implemented it on the quantum circuit [8].

Figure 17 shows the whole process of the quantum random walk on a circular graph
with 22 nodes (Figure 18). The gray rectangular frame means a set of coin and shift
operators. In this circuit, q[0] and q[1] represent the state of the quantum walker, and q[2]
represents the coin operator.
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The coin operator decides whether the walker proceeds clockwise or counterclockwise.
The INC is the gate that increments the walker state, which is equal to a clockwise rotation
in the cycle graph. The DEC is the gate that decrements the walker state, which is equal to
a counterclockwise rotation in the cycle graph.

After repeatedly executing the coin and shift(INC, DEC) operators, we can now know
the probability of measuring a qubit and the walker position.

Figure 19 shows the probability that the qubit will be measured according to each
value. However, a high probability value does not necessarily result in a measurement
(=not an output value), and a low probability value can also be an output value.
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Figure 19. Result of quantum random walk.

Random numbers generated using quantum random walk have no repetitive cycles, so
there is no correlation between the front and rear numbers, and are unpredictable because
they depend on the probability. Therefore, we enhanced security by making estimation of
decryption more difficult using quantum random walk.

6. Encryption Evaluation

In this study, we conducted a performance evaluation of images with encryption
described in Section 5. We used Python to implement the original AES. Moreover, we
proposed a method using the linear congruential generator and the Mersenne Twister using
the systems and simulators provided by IBM Quantum using IBM Quantum accounts to
implement the proposed method through the quantum random walk.

The experiments were conducted in quantum simulators because the AES proposed
in this research is challenging to implement the existing quantum computing environment
due to practical restrictions. In addition, IBM quantum computing environments support
Qiskit, a quantum programming tool used in this study. However, IBM quantum comput-
ing environments with more than six qubits are currently exclusively used collaborative
support for joint development. Because the AES described in this research requires more
than six qubits, it is practically unavailable to quantum computing environments, so simu-
lation results are reported. Lena, Baboon, and Pepper, which are 256 × 256 pixels, are the
plain images shown.

The images in the first row in Figure 20 are plain images; those in the second row are
cipher images; and those in the third row are the recovered images from the cipher images.
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We used the number of pixel change rate (NPCR) and the unified average changing
intensity (UACI) to test the influence of a 1 px change on the whole image encrypted by any
encryption algorithm. The higher the NPCR and UACI values, the better the encryption
will be.

6.1. Number of Pixels Change Rate

The NPCR [9] is a test used to measure the avalanche effect in image encryption. The
avalanche effect is utilized to test the diffusion mechanism efficiency. A single bit change
can be made in image P1 to give a modified image, P2. Both P1 and P2 are encrypted to
give C1 and C2, respectively. The NPCR is defined as follows:

NPCR =
1

M× N ∑
i,j

D(i, j)× 100 (%) (5)

D(i, j) =
{

0, i f C1(i, j) = C2(i, j)
1, i f C1(i, j) 6= C2(i, j)

(6)

where D(i,j) is defined in Equation (6). The ciphertext images before and after 1 px change
in a plaintext image are defined as C1 and C2. The pixel values at grid (i,j) in C1 and C2 are
described as C1(i,j) and C2(i,j), respectively. M and N are the dimensions of the image to be
encrypted.

6.2. Unified Average Changing Intensity

The UACI [10] measures the average intensity of the differences between two images
and is defined as

UACI =
1

M× N ∑
i,j

| C1(i, j)− C2(i, j) |
255

× 100 (%) (7)

where C1(i,j), C2(i,j), M, and N are the same as those in the NPCR described above.
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We performed plain image sensitivity analysis through changing 1 px of random loca-
tion for each experiment for plain images Lena, Baboon, and Pepper, and then calculating
NPCR and UACI for all pixels. In addition, 10 experiments were conducted each in plain
images of Lena, Baboon, and Pepper, and the results of NPCR and UACI for the plain
images are shown in Tables 7 and 8. The average NPCR was higher 99% and the average
UACI was higher 33%.

Table 7. NPCR result of the original AES and the proposed methods.

NPCR (%)

Image
(256 × 256)

Color
Channel

Original
AES

Method by
the LCG

Method by
the MT

Method by
the QRW

Lena
R 0.0079 99.5883 99.601 99.6214
G 0.0082 99.5972 99.588 99.6001
B 0.0081 99.5903 99.6222 99.6053

Baboon
R 0.0081 99.6012 99.6201 99.6144
G 0.0081 99.6097 99.6114 99.6196
B 0.0082 99.6105 99.6063 99.6077

Pepper
R 0.0081 99.5899 99.5972 99.5929
G 0.0079 99.5933 99.6104 99.5944
B 0.0081 99.6016 99.6018 99.6022

Table 8. UACI result of the original AES and the proposed methods.

NPCR (%)

Image
(256 × 256)

Color
Channel

Original
AES

Method by
the LCG

Method by
the MT

Method by
the QRW

Lena
R 0.0029 33.4453 33.451 33.4648
G 0.0026 33.4366 33.4935 33.4796
B 0.0028 33.3944 33.456 33.4287

Baboon
R 0.0027 33.4097 33.4058 33.4803
G 0.003 33.4201 33.4408 33.4448
B 0.0024 33.4096 33.4115 33.4726

Pepper
R 0.0029 33.4744 33.4787 33.4774
G 0.0029 33.4134 33.4216 33.4609
B 0.0028 33.4386 33.4553 33.4736

This means that, even with a slight difference between the two plain images, the
two encrypted images are completely different, and the results show that the proposed
algorithm is highly sensitive to small changes in the plain image. Thus, the proposed
algorithm indicates that it is robust against differential attacks. Differential attack refers
to slightly changing the encrypted image (ex: modifying only 1 px) to observe the change
in the result, thereby finding a meaningful relationship between the plain image and the
encrypted image. However, differential attacks become useless if minor changes in plain
images can cause significant changes in encrypted images. Therefore, it can be seen that
the algorithm proposed in this paper has improved security compared to the existing
algorithm.

Table 9 shows the performance time of the original AES algorithm and the proposed
AES algorithm and the time uni. Compared to the existing AES method, the part that
increased time complexity is the part that generated random numbers through quantum
simulators. Encrypting an image with Original AES took 0.05 min, and 0.05 to 0.07 min to
encrypt an image by generating random numbers with the Linear Consequential Generator
and Mersenne Twitter. However, the time spent using quantum random walk using the
quantum simulator may seem to have increased significantly to about 53–55 min, but this
is time-consuming because random numbers were generated in the quantum simulator.
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Table 9. The performance time of the proposed algorithm.

Image
(256 × 256)

Original
AES

Method by
the LCG

Method by
the MT

Method by
the QRW

Lena 0.05 0.06 0.05 53.256
Baboon 0.04 0.06 0.06 55.729
Pepper 0.05 0.05 0.07 54.481

We implemented quantum random walk through quantum superposition using
Hadamard gate, which takes a long time to derive computational values assuming that
quantum superposed. However, in real quantum computers, quantum computers are
performed by directly superposing them, so if quantum computers become common in the
future, it will reduce the time required and will not be a big problem.

7. Conclusions and Future Work

In this paper, we proposed quantum computing-based implementations of existing
AES algorithms and modified AES and described their performance evaluation.

Our results showed that the quantum computing-based implementation requires
approximately 7518 gates and 64 qubits per iteration and the proposed algorithms generally
showed good performance. Among them, the quantum random walk method showed the
best encryption performance. We also used IBM Quantum accounts to use the systems
and the simulators provided by IBM Quantum to implement the proposed method by a
quantum random walk.

This research is in progress, thus further investigation into resource consumption and
endeavors to reduce resource consumption will continue. Regarding evaluation on real
quantum computers, as of now there are only 65 qubits of the latest quantum computers
that can be accessed through the IBM Cloud. However, IBM recently announced plans to
release the 1121-qubit system by the end of 2023 [11]. Once this system is released, we will
compare the simulation results in the paper with those on real quantum computers. We
will use quantum superposition to improve the speed side.
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