applsci-logo

Journal Browser

Journal Browser

Feature Review Papers in Applied Physics

A special issue of Applied Sciences (ISSN 2076-3417). This special issue belongs to the section "Applied Physics General".

Deadline for manuscript submissions: 20 January 2025 | Viewed by 8160

Special Issue Editors


E-Mail Website
Guest Editor
Section of Condensed Matter Physics and Solid Earth Physics Institute, Department of Physics, National and Kapodistrian University of Athens, Panepistimiopolis Zografos, 157 84 Athens, Greece
Interests: earthquake precursory phenomena; physics of earthquakes; earthquake prediction; natural time analysis; thermodynamics of point defects; complex systems physics; nonlinear dynamics
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Department of Computer Science, School of Computing and Engineering, University of Huddersfield, Huddersfield, UK
Interests: time series analysis; molecular dynamics; condensed matter physics; stochastic processes; density functional theory; time series; neural networks; deep learning; solid state physics; molecular dynamics simulation

Special Issue Information

Dear Colleagues,

We now stand almost one year after the end of the COVID-19 pandemic with the will to continue our pursuit of the physical law in science and of innovation in engineering. This Special Issue focuses on the recent advances in applied physics. and aims to collect high-quality systematic reviews in this field.

All applications of physics aiming to solve practical problems are included. All articles that employ physics or present physics research focused on (i) developing new methods and/or technologies or (ii) solving engineering problems are welcome.

The topics of interest for this Special Issue include, but are not limited to, astrophysics, atmosphere, biophysics, cardiology, complex systems, disaster mitigation, earthquakes, geophysics, lasers, materials, medicine, optics, photonics, plasmas, reliability, safety, security, semiconductors, and spectroscopy. 

We hope all published papers will be widely read, highly influential and promote the most recent advances in the field.

Prof. Dr. Nicholas Vassiliou Sarlis
Dr. Stavros-Richard G. Christopoulos
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Applied Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • astrophysics
  • atmospheric physics
  • biophysics
  • cardiology
  • complex systems
  • disaster mitigation
  • earthquakes
  • geophysics
  • lasers
  • materials
  • medicine
  • optics
  • photonics
  • plasmas
  • reliability
  • safety
  • security
  • semiconductors
  • spectroscopy

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Review

24 pages, 6085 KiB  
Review
Biophotons: A Hard Problem
by Luca De Paolis, Roberto Francini, Ivan Davoli, Fabio De Matteis, Alessandro Scordo, Alberto Clozza, Maurizio Grandi, Elisabetta Pace, Catalina Curceanu, Paolo Grigolini and Maurizio Benfatto
Appl. Sci. 2024, 14(13), 5496; https://doi.org/10.3390/app14135496 - 25 Jun 2024
Cited by 1 | Viewed by 2129
Abstract
About a hundred years ago, the Russian biologist A. Gurwitsch, based on experiments with onion plants by measuring their growth rate, hypothesized that plants emit a weak electromagnetic field that somehow influences cell growth. This interesting observation remained fundamentally ignored by the scientific [...] Read more.
About a hundred years ago, the Russian biologist A. Gurwitsch, based on experiments with onion plants by measuring their growth rate, hypothesized that plants emit a weak electromagnetic field that somehow influences cell growth. This interesting observation remained fundamentally ignored by the scientific community; only in the 1950s the electromagnetic emission from some plants was measured using a photomultiplier used in single counting mode. Later, in the 1980s, several groups around the world started extensive work to understand the origin and role of this ultraweak emission, now called biophotons, coming from living organisms. Biophotons are an endogenous very small production of photons in the visible energy range in and from cells and organisms, and this emission is characteristic of living organisms. Today, there is no doubt that biophotons exist, this emission has been measured by many groups and for many different living organisms, from humans to bacteria. However, the origin of biophotons and whether organisms use them to exchange information is not yet well understood; no model proposed to date is capable of reproducing and interpreting the great variety of experimental data coming from the many different living systems measured so far. In this brief review, we present our experimental work on the biophotons coming from germinating seeds, the main experimental results, and some new methods we are using to analyze the data to open the door for interpretative models of this phenomenon clarifying its function in the regulation and communication between cells and living organisms. We also discuss ideas on how to increase the signal-to-noise ratio of the measured signal to open up new experimental possibilities that allow the measurement and the characterization of currently unmeasurable quantities. Full article
(This article belongs to the Special Issue Feature Review Papers in Applied Physics)
Show Figures

Figure 1

13 pages, 2857 KiB  
Review
Unusual Animal Behavior as a Possible Candidate of Earthquake Prediction
by Masashi Hayakawa and Hiroyuki Yamauchi
Appl. Sci. 2024, 14(10), 4317; https://doi.org/10.3390/app14104317 - 20 May 2024
Viewed by 1307
Abstract
Short-term (with a lead time of about one week) earthquake (EQ) prediction is one of the most challenging subjects in geoscience and applied science; however, it is highly required by society because it is of essential importance in mitigating the human and economic [...] Read more.
Short-term (with a lead time of about one week) earthquake (EQ) prediction is one of the most challenging subjects in geoscience and applied science; however, it is highly required by society because it is of essential importance in mitigating the human and economic losses associated with EQs. Electromagnetic precursors have recently been agreed to be the most powerful candidate for short-term prediction, because a lot of evidence has been accumulated on the presence of electromagnetic precursors (not only from the lithosphere, but also from the atmosphere and ionosphere) prior to EQs during the last three decades. On the other hand, unusual animal behavior associated with EQs, which is the main topic of this review, has been investigated as a macroscopic phenomenon for many years, with a much longer history than the study of seismo-electromagnetics. So, in this paper, we first summarize the previous research work on this general unusual animal behavior with reference to its relationship with EQs, and then we pay the greatest attention to our own previous work on dairy cows’ milk yield changes. We recommend this unusual animal behavior as an additional potential tool for short-term EQ prediction, which may be a supplement to the above seismo-electromagnetic effects. Finally, we will present our latest case study (as an example) on unusual changes of cows’ milk yields for a particular recent Tokyo EQ on 7 October 2021, and further propose that electromagnetic effects might be a possible sensory mechanism of unusual animal behavior, suggesting a close link between electromagnetic effects and unusual animal behavior. Full article
(This article belongs to the Special Issue Feature Review Papers in Applied Physics)
Show Figures

Figure 1

31 pages, 20277 KiB  
Review
A Review of Friction Dissipative Beam-to-Column Connections for the Seismic Design of MRFs
by Piero Colajanni, Muhammad Ahmed, Salvatore Pagnotta and Pietro Orlando
Appl. Sci. 2024, 14(6), 2291; https://doi.org/10.3390/app14062291 - 8 Mar 2024
Viewed by 1525
Abstract
The use of friction-based beam-to-column connections (BCCs) for earthquake-resistant moment-resistant frames (MRFs), aimed at eliminating damage to beam end sections due to the development of plastic hinges, has been prevalent since the early 1980s. Different technical solutions have been proposed for steel structures, [...] Read more.
The use of friction-based beam-to-column connections (BCCs) for earthquake-resistant moment-resistant frames (MRFs), aimed at eliminating damage to beam end sections due to the development of plastic hinges, has been prevalent since the early 1980s. Different technical solutions have been proposed for steel structures, and some have been designed for timber structures, while a few recent studies concern friction joints employed in reinforced concrete structures. Research aimed at characterizing the behavior of joints has focused on the evaluation of the tribological properties of the friction materials, coefficient of friction, shape and stability of the hysteresis cycles, influence of the temperature, speed of load application, effects of the application method, stability of preload, the influence of seismic excitation characteristics on the structural response, statistical characterization of amplitude, and frequency of the slip excursion during seismic excitation. Studies aimed at identifying the design parameters capable of optimizing performance have focused attention mainly on the slip threshold, device stiffness, and deformation capacity. This review compiles the main and most recent solutions developed for MRFs. Furthermore, the pros and cons for each solution are highlighted, focusing on the dissipative capacity, shape, and stability of hysteresis loops. In addition, the common issues affecting all friction connections, namely the characteristics of friction shims and the role of bolt preload, are discussed. Based on the above considerations, guidelines can be outlined that can be used to help to choose the most appropriate solutions for BCCs for MRFs. Full article
(This article belongs to the Special Issue Feature Review Papers in Applied Physics)
Show Figures

Figure 1

15 pages, 1815 KiB  
Review
The Evolution of Solid Oxide Fuel Cell Materials
by Alexander Chroneos, Ioannis L. Goulatis, Andrei Solovjov and Ruslan V. Vovk
Appl. Sci. 2024, 14(1), 69; https://doi.org/10.3390/app14010069 - 20 Dec 2023
Cited by 5 | Viewed by 2273
Abstract
Solid oxide fuel cells (SOFCs) are a key component of the future energy landscape. Although there is considerable research on the physical properties and technology of classic oxide materials for electrode and electrolytes in SOFCs, the field is very active as new experimental [...] Read more.
Solid oxide fuel cells (SOFCs) are a key component of the future energy landscape. Although there is considerable research on the physical properties and technology of classic oxide materials for electrode and electrolytes in SOFCs, the field is very active as new experimental and theoretical techniques are now available that can improve these systems. In the present review, we consider key systems such as perovskite-related materials, the impact of strain and interfaces and advanced concepts that can improve the properties of SOFC materials. In particular, we consider the oxygen diffusion properties of perovskite-related materials and focus on La2NiO4+δ and the double perovskites such as GdBaCo2O5.5. Then, we review the importance of interfaces and strain as a way to engineer defect processes. Finally, we consider advanced concepts to form designed structures that explore the effect of local high entropy on lattice stabilization. Full article
(This article belongs to the Special Issue Feature Review Papers in Applied Physics)
Show Figures

Figure 1

Back to TopTop