applsci-logo

Journal Browser

Journal Browser

Recent Sustainable Advancements in the Pulp and Paper Industry: A Life Cycle Perspective

A special issue of Applied Sciences (ISSN 2076-3417). This special issue belongs to the section "Applied Industrial Technologies".

Deadline for manuscript submissions: 20 November 2025 | Viewed by 693

Special Issue Editor


E-Mail Website
Guest Editor
Department of Environmental Materials Science/IALS, Gyeongsang National University, Jinju 52828, Republic of Korea
Interests: novel pulp and paper materials; TMP refiner plates
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

This Special Issue aims to address several key areas:

(1) Environmental Sustainability: Sustainability is a crucial topic of focus for the pulp and paper industry. This Special Issue will highlight innovations in sustainable production technologies that reduce environmental impact and promote resource efficiency.

(2) Life Cycle Assessment (LCA) of Paper Grades: By incorporating LCA, this Special Issue can provide comprehensive insights into the environmental impacts of different paper grades, leading to improvements in sustainability throughout their life cycles.

(3) Innovative Production Technologies: This Special Issue welcomes research on cutting-edge technologies and processes that enhance sustainability, such as advancements in recycling, alternative raw materials, and energy-efficient production methods.

Prof. Dr. Chul-Hwan Kim
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Applied Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • pulp and paper characterization
  • paper quality
  • paper strength
  • process efficiency
  • production costs
  • cellulose composites
  • biocomposites
  • cellulose nanofibril
  • novel plate for manufacturing thermomechanical pulp (TMP)
  • TMP refiner plates
  • electron beam irradiation
  • colored broke
  • ISO brightness
  • reuse
  • color change

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

18 pages, 1410 KB  
Article
Development of Paper Utilizing Miscanthus Pulp Combined with Waste Paper for the Production of Packaging
by Yulia Sevastyanova, Natalya Shcherbak, Alexander Potashev, Svetlana Malkina, Ekaterina Palchikova, Igor Makarov, Danagul Kalimanova, Georgy Makarov, Ivan S. Levin, Gulbarshin Shambilova, Ayauzhan Shakhmanova, Amanzhan Saginayev, Fazilat Kairliyeva and Ivan Komarov
Appl. Sci. 2025, 15(20), 11157; https://doi.org/10.3390/app152011157 - 17 Oct 2025
Abstract
Much focus is being dedicated to the development of innovative technologies for producing biodegradable polymers from plant biomass. It is proposed that annual and perennial herbaceous plants, such as miscanthus, be used as promising sources of cellulose. The component composition of miscanthus allows [...] Read more.
Much focus is being dedicated to the development of innovative technologies for producing biodegradable polymers from plant biomass. It is proposed that annual and perennial herbaceous plants, such as miscanthus, be used as promising sources of cellulose. The component composition of miscanthus allows us to consider it as a raw material for obtaining cellulose. This paper proposes methods for cooking miscanthus lignocellulose raw materials, which allow sulfate cellulose to be obtained with a high yield (up to 52%). In the process of obtaining chemical–thermomechanical pulp, the product yield is 71%. The possibility of replacing unbleached sulfate pulp with a semi-finished product from miscanthus for paper production is considered. For all types of raw materials obtained, acceptable paper-forming properties are observed. The best strength and deformation properties are obtained for sulfate cellulose. The addition of this cellulose to the composition of waste paper fluting significantly increases the sheet density, elasticity, and energy capacity without losing tensile strength. Using miscanthus raw materials along with waste paper of grade MS 5B makes it possible to make a composite product. The resulting products have optimal mechanical properties for creating the middle layer of corrugated cardboard. Miscanthus cellulose can be considered a promising raw material for enhancing waste paper fluting. Altering the system composition utilizing miscanthus and waste paper enables a broad modification of the mechanical and optical qualities of the resultant paper. The recommended concentration of miscanthus fraction in waste paper fluting is 30%. Full article
13 pages, 8613 KB  
Article
Optimizing Fiber Quality in Recycled Old Corrugated Containers (OCC) Using Ultra-Fine Bar Plate Technology
by Min-Sik Park, Chul-Hwan Kim, Hyeong-Hun Park, Ju-Hyun Park and Jae-Sang Lee
Appl. Sci. 2025, 15(16), 9036; https://doi.org/10.3390/app15169036 - 15 Aug 2025
Viewed by 470
Abstract
This study evaluated the performance of ultra-fine bar refiner plates with a cutting edge length (CEL) of 97 km/s in enhancing the properties of Korean Old Corrugated Containers (KOCCs) compared to conventional plates with a CEL of 37 km/s. While unrefined KOCCs demonstrated [...] Read more.
This study evaluated the performance of ultra-fine bar refiner plates with a cutting edge length (CEL) of 97 km/s in enhancing the properties of Korean Old Corrugated Containers (KOCCs) compared to conventional plates with a CEL of 37 km/s. While unrefined KOCCs demonstrated compromised mechanical properties except for higher paper bulk, refining with the ultra-fine bar plate significantly improved tensile strength, tear strength, and water retention value (WRV). Although the conventional plate achieved higher stock throughput at lower specific energy, the ultra-fine bar plate proved more energy-efficient for achieving targeted fiber quality enhancements. The observed throughput plateau of the ultra-fine bar plate is attributed to its narrower groove design, which increases flow resistance. Overall, the ultra-fine bar plates offer a promising route for producing high-performance recycled paper by balancing refining energy inputs and fiber quality improvements. Full article
Show Figures

Figure 1

Back to TopTop