applsci-logo

Journal Browser

Journal Browser

Applications of Thin Films and Their Physical Properties

A special issue of Applied Sciences (ISSN 2076-3417). This special issue belongs to the section "Materials Science and Engineering".

Deadline for manuscript submissions: 20 July 2025 | Viewed by 1176

Special Issue Editor


E-Mail Website
Guest Editor
School of Natural (SNS), Massey University Albany, Auckland 0632, New Zealand
Interests: thin films; photoconductive detectors; scintillators; optical materials; vacuum ultraviolet laser materials; ultraviolet laser and amplifier systems; spectroscopy of rare earth-doped crystals and glasses
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Owing to the numerous advantages over their bulk counterparts, thin films have found numerous applications in a wide variety of fields, including photocatalysis, sensing, optics, electronics, opto-electronics, photovoltaics, spintronics, and so on. Techniques for preparing thin films, such as magnetron sputtering, molecular beam epitaxy (MBE), metal–organic chemical vapor deposition (MOCVD), pulsed laser deposition (PLD), etc., have progressively advanced, while processes that integrate thin films into devices are actively being developed.

This Special Issue showcases leading cutting-edge research on all aspects of thin film technology, ranging from thin film growth to characterization, and the many applications of thin films, including integration into devices. Both experimental and theoretical work, or a combination of both, is welcome. High-quality, original research papers and review articles that include, but are not limited to, the following topics will be considered:

  • Fabrication by wet (chemical, solution processing, etc.) and dry (magnetron sputtering, pulsed laser deposition, etc.) methods;
  • Preparation by laser and vapor deposition techniques;
  • Thin film characterization;
  • Surface and interface investigation and engineering;
  • Numerical modeling of thin films;
  • Metal oxides, semiconductors, metals, dielectrics, superconductors, carbon films, and nanostructures;
  • Conducting and insulating polymer thin films;
  • Nanocomposite thin films;
  • Nanostructured thin films;
  • Applications: photocatalysis, solar cells, gas sensors, electrode materials, radiation sensors, devices, optical, electronic, opto-electronic, etc.

You may submit your manuscript from now until the deadline. Submitted papers should not be considered for publication elsewhere.

This Special Issue will be fully open-access. Open access (unlimited and free access by readers) increases publicity and attracts more citations, as indicated by several studies.

For further details on the submission process, please see the instructions for authors.

We look forward to receiving your submissions. 

Dr. Marilou Cadatal Raduban
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Applied Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • thin film fabrication
  • thin film characterization
  • thin film modelling
  • thin film applications
  • surfaces and interfaces
  • nanocomposite thin films
  • nanoparticles
  • solar energy conversion
  • catalysis
  • magnetics and magneto-optics
  • electronics, optics, and opto-electronics

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

13 pages, 4091 KiB  
Article
Evaluating the Tribological Properties and Residual Stress of TiCrN Thin Films Deposited by Cathodic-Arc Physical Vapor Deposition Technique
by Sudipta Mohapatra and Min-Suk Oh
Appl. Sci. 2025, 15(5), 2466; https://doi.org/10.3390/app15052466 - 25 Feb 2025
Viewed by 374
Abstract
The present study reports the tribological properties and residual stress of titanium chromium nitride (TiCrN) coatings. Thin films of TiCrN were deposited on tungsten carbide substrates at 400 °C in a vacuum of 5 × 10−6 mbar using the cathodic-arc physical vapor [...] Read more.
The present study reports the tribological properties and residual stress of titanium chromium nitride (TiCrN) coatings. Thin films of TiCrN were deposited on tungsten carbide substrates at 400 °C in a vacuum of 5 × 10−6 mbar using the cathodic-arc physical vapor deposition technique with chromium variation. X-ray diffraction (XRD) spectroscopy was employed to probe the structures of the deposited thin films. The phase constituent was found to gradually shift from cubic TiN to cubic CrN. Both the hardness and elastic modulus of the sheet changed from 29.7 to 30.9 GPa and 446 to 495 GPa, respectively. The biaxial compressive residual stress after an initial absolute scan in the range of 30–100° was determined using XRD (d-sin2ψ method). These mechanical and tribological properties of films were investigated with the help of instrumented nanoindentation and a ball-on-disk tribometer wear test. The wear test indicates that the TiCrN thin film, featuring a Cr/Ti ratio of 0.587, exhibits superior wear resistance and maximum compressive residual stress in comparison to other thin films. Full article
(This article belongs to the Special Issue Applications of Thin Films and Their Physical Properties)
Show Figures

Figure 1

15 pages, 4549 KiB  
Article
Performance Analysis of Scandium-Doped Aluminum Nitride-Based PMUTs Under High-Temperature Conditions
by Haochen Lyu and Ahmad Safari
Appl. Sci. 2025, 15(5), 2428; https://doi.org/10.3390/app15052428 - 24 Feb 2025
Viewed by 376
Abstract
PMUTs have been widely studied in recent years, particularly those based on the SOI (silicon-on-insulator) process, which have been partially commercialized and are extensively used in advanced applications such as ultrasonic ranging and spatial positioning. However, there has been little research on their [...] Read more.
PMUTs have been widely studied in recent years, particularly those based on the SOI (silicon-on-insulator) process, which have been partially commercialized and are extensively used in advanced applications such as ultrasonic ranging and spatial positioning. However, there has been little research on their high-temperature reliability, a critical area for their use in extreme environmental conditions. In this study, we investigate the high-temperature characteristics of air-coupled PMUTs based on SOI under various structural conditions, employing both finite element analysis (FEA) and experimental validation. We assess the performance of PMUTs at elevated temperatures by examining key parameters such as resonant frequency, the electromechanical coupling coefficient, mechanical amplitude, and warpage, all analyzed as functions of temperature. The experimental results show that temperature-induced drift becomes more significant as the back cavity size increases and the top silicon layer thickness decreases. These findings are consistent with the trends observed in the finite element analysis. Specifically, a PMUT with a back cavity diameter of 1000 μm and a top silicon thickness of 4 μm exhibits a temperature drift rate of up to 47.3% when the operating temperature rises from room temperature to 200 °C. Furthermore, at elevated temperatures, the maximum electromechanical coupling coefficient improves by 68.6%, and the mechanical amplitude increases by 66.1%. Heating experiments using a 3D profiler reveal that warpage increases from 0.3 μm to 2.15 μm as the temperature reaches 150 °C. These findings offer important theoretical insights into the temperature-induced drift behavior of PMUTs under high-temperature conditions. This study provides a comprehensive understanding of the performance variations of PMUTs, including changes in electromechanical coupling, mechanical amplitude, and structural warpage, which are critical for their reliable operation in extreme environments. The results presented here can serve as a foundation for the design and optimization of PMUTs in applications that require high-temperature stability, ensuring their enhanced reliability and performance in such demanding conditions. Full article
(This article belongs to the Special Issue Applications of Thin Films and Their Physical Properties)
Show Figures

Figure 1

Back to TopTop