applsci-logo

Journal Browser

Journal Browser

New Trends in Robot-Assisted Surgery

A special issue of Applied Sciences (ISSN 2076-3417). This special issue belongs to the section "Biomedical Engineering".

Deadline for manuscript submissions: 20 November 2025 | Viewed by 892

Special Issue Editors


E-Mail Website
Guest Editor
Department of Pediatric Surgery and Orthopedics, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania
Interests: pediatric surgery; pediatric urology; pediatric endourology; pediatric orthopedics; minimal invasive surgery; robotic surgery; experimental surger

E-Mail Website
Guest Editor
Department of Surgery and Biomedical Sciences, University of Perugia, 06123 Perugia, Italy
Interests: urologic oncology; minimally invasive surgery; laser therapy; translational research in urology; functional urology
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Since the first robotic systems were developed in the 1990s, robot-assisted surgery has evolved significantly, transforming the landscape of minimally invasive procedures. In recent years, several new robotic systems have been developed and are now available, beginning a new era of precision and efficiency in the operating room. The innovations in this ever-evolving field promise to enhance surgical outcomes, streamline operations, and expand access to cutting-edge care. Key developments include the integration of artificial intelligence (AI) for real-time decision-making, the miniaturization of robotic instruments for increased dexterity, and the rise of telepresence capabilities that allow for remote expertise to guide complex surgeries. Together, these trends are not only improving the efficacy of surgical interventions but also setting the stage for a transformative shift in how minimal invasive surgery is performed and experienced by patients worldwide. We are excited to invite you to contribute to an upcoming Special Issue of our journal dedicated to exploring the "New Trends in Robot-Assisted Surgery" that will shape the future of such medical procedures. This Issue aims to provide a comprehensive overview of the latest advancements and emerging trends in this rapidly evolving field.

Dr. Vlad-Laurentiu David
Dr. Giovanni Cochetti
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Applied Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • robotic-assisted surgery
  • minimal invasive surgery
  • medical and technological advancements
  • innovation, challenges, and trends in robotic surgery

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

16 pages, 3634 KiB  
Article
Reconstruction of a 3D Real-World Coordinate System and a Vascular Map from Two 2D X-Ray Pixel Images for Operation of Magnetic Medical Robots
by Nahyun Kim, Serim Lee, Junhyoung Kwon and Gunhee Jang
Appl. Sci. 2025, 15(11), 6089; https://doi.org/10.3390/app15116089 - 28 May 2025
Viewed by 260
Abstract
We propose a method to reconstruct a 3D coordinate system and a vascular map for the operation of magnetic medical robots (MMRs) controlled by a magnetic navigation system (MNS) using two 2D X-ray images and four corners of an MNS. Utilizing the proposed [...] Read more.
We propose a method to reconstruct a 3D coordinate system and a vascular map for the operation of magnetic medical robots (MMRs) controlled by a magnetic navigation system (MNS) using two 2D X-ray images and four corners of an MNS. Utilizing the proposed method, we calculated the relative rotation angle of a C-arm considering its rotational precision error. We derived the position information and 3D coordinate system of an MNS workspace in which the magnetic fields are generated and controlled by an MNS. The proposed method can also be utilized to reconstruct vascular maps. Reconstructed vascular maps are in the 3D coordinate system of the C-arm and can be transformed into the 3D coordinate system of an MNS workspace to generate the magnetic flux density with the desired direction and magnitude at the position of the MMR. The proposed method allows us to remotely and precisely control the MMR inserted into the vessel by controlling the external magnetic field. The proposed method was validated through in vitro experiments with an MNS mock-up and a vascular jig. Finally, the proposed method was applied to in vivo experiments where the MMR was inserted into the superficial femoral artery of a mini pig to remotely control the motion of the MMR. This research will enable precise and effective control of MMRs in various medical procedures utilizing an MNS. Full article
(This article belongs to the Special Issue New Trends in Robot-Assisted Surgery)
Show Figures

Figure 1

Review

Jump to: Research

18 pages, 602 KiB  
Review
Innovations in Robot-Assisted Surgery for Genitourinary Cancers: Emerging Technologies and Clinical Applications
by Stamatios Katsimperis, Lazaros Tzelves, Georgios Feretzakis, Themistoklis Bellos, Ioannis Tsikopoulos, Nikolaos Kostakopoulos and Andreas Skolarikos
Appl. Sci. 2025, 15(11), 6118; https://doi.org/10.3390/app15116118 - 29 May 2025
Viewed by 408
Abstract
Robot-assisted surgery has transformed the landscape of genitourinary cancer treatment, offering enhanced precision, reduced morbidity, and improved recovery compared to open or conventional laparoscopic approaches. As the field matures, a new generation of technological innovations is redefining the boundaries of what robotic systems [...] Read more.
Robot-assisted surgery has transformed the landscape of genitourinary cancer treatment, offering enhanced precision, reduced morbidity, and improved recovery compared to open or conventional laparoscopic approaches. As the field matures, a new generation of technological innovations is redefining the boundaries of what robotic systems can achieve. This narrative review explores the integration of artificial intelligence, advanced imaging modalities, augmented reality, and connectivity in robotic urologic oncology. The applications of machine learning in surgical skill evaluation and postoperative outcome predictions are discussed, along with AI-enhanced haptic feedback systems that compensate for the lack of tactile sensation. The role of 3D virtual modeling, intraoperative augmented reality, and fluorescence-guided surgery in improving surgical planning and precision is examined for both kidney and prostate procedures. Emerging tools for real-time tissue recognition, including confocal microscopy and Raman spectroscopy, are evaluated for their potential to optimize margin assessment. This review also addresses the shift toward single-port systems and the rise of telesurgery enabled by 5G connectivity, highlighting global efforts to expand expert surgical care across geographic barriers. Collectively, these innovations represent a paradigm shift in robot-assisted urologic oncology, with the potential to enhance functional outcomes, surgical safety, and access to high-quality care. Full article
(This article belongs to the Special Issue New Trends in Robot-Assisted Surgery)
Show Figures

Figure 1

Back to TopTop