applsci-logo

Journal Browser

Journal Browser

Editor’s Choice Articles

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:

Review

35 pages, 7341 KiB  
Review
Graphene Nanoplatelets-Based Advanced Materials and Recent Progress in Sustainable Applications
by Pietro Cataldi, Athanassia Athanassiou and Ilker S. Bayer
Appl. Sci. 2018, 8(9), 1438; https://doi.org/10.3390/app8091438 - 23 Aug 2018
Cited by 203 | Viewed by 18039
Abstract
Graphene is the first 2D crystal ever isolated by mankind. It consists of a single graphite layer, and its exceptional properties are revolutionizing material science. However, there is still a lack of convenient mass-production methods to obtain defect-free monolayer graphene. In contrast, graphene [...] Read more.
Graphene is the first 2D crystal ever isolated by mankind. It consists of a single graphite layer, and its exceptional properties are revolutionizing material science. However, there is still a lack of convenient mass-production methods to obtain defect-free monolayer graphene. In contrast, graphene nanoplatelets, hybrids between graphene and graphite, are already industrially available. Such nanomaterials are attractive, considering their planar structure, light weight, high aspect ratio, electrical conductivity, low cost, and mechanical toughness. These diverse features enable applications ranging from energy harvesting and electronic skin to reinforced plastic materials. This review presents progress in composite materials with graphene nanoplatelets applied, among others, in the field of flexible electronics and motion and structural sensing. Particular emphasis is given to applications such as antennas, flexible electrodes for energy devices, and strain sensors. A separate discussion is included on advanced biodegradable materials reinforced with graphene nanoplatelets. A discussion of the necessary steps for the further spread of graphene nanoplatelets is provided for each revised field. Full article
(This article belongs to the Special Issue Graphene Nanoplatelets)
Show Figures

Graphical abstract

36 pages, 9540 KiB  
Review
A Review of AlGaN-Based Deep-Ultraviolet Light-Emitting Diodes on Sapphire
by Yosuke Nagasawa and Akira Hirano
Appl. Sci. 2018, 8(8), 1264; https://doi.org/10.3390/app8081264 - 31 Jul 2018
Cited by 163 | Viewed by 12513
Abstract
This paper reviews the progress of AlGaN-based deep-ultraviolet (DUV) light emitting diodes (LEDs), mainly focusing in the work of the authors’ group. The background to the development of the current device structure on sapphire is described and the reason for using a (0001) [...] Read more.
This paper reviews the progress of AlGaN-based deep-ultraviolet (DUV) light emitting diodes (LEDs), mainly focusing in the work of the authors’ group. The background to the development of the current device structure on sapphire is described and the reason for using a (0001) sapphire with a miscut angle of 1.0° relative to the m-axis is clarified. Our LEDs incorporate uneven quantum wells (QWs) grown on an AlN template with dense macrosteps. Due to the low threading dislocation density of AlGaN and AlN templates of about 5 × 108/cm2, the number of nonradiative recombination centers is decreased. In addition, the uneven QW show high external quantum efficiency (EQE) and wall-plug efficiency, which are considered to be boosted by the increased internal quantum efficiency (IQE) by enhancing carrier localization adjacent to macrosteps. The achieved LED performance is considered to be sufficient for practical applications. The advantage of the uneven QW is discussed in terms of the EQE and IQE. A DUV-LED die with an output of over 100 mW at 280–300 nm is considered feasible by applying techniques including the encapsulation. In addition, the fundamental achievements of various groups are reviewed for the future improvements of AlGaN-based DUV-LEDs. Finally, the applications of DUV-LEDs are described from an industrial viewpoint. The demonstrations of W/cm2-class irradiation modules are shown for UV curing. Full article
(This article belongs to the Special Issue Highly Efficient UV and Visible Light Sources)
Show Figures

Figure 1

21 pages, 3290 KiB  
Review
Research Progress of Gas Sensor Based on Graphene and Its Derivatives: A Review
by Wenchao Tian, Xiaohan Liu and Wenbo Yu
Appl. Sci. 2018, 8(7), 1118; https://doi.org/10.3390/app8071118 - 11 Jul 2018
Cited by 165 | Viewed by 10207
Abstract
Gas sensors are devices that convert a gas volume fraction into electrical signals, and they are widely used in many fields such as environmental monitoring. Graphene is a new type of two-dimensional crystal material that has many excellent properties including large specific surface [...] Read more.
Gas sensors are devices that convert a gas volume fraction into electrical signals, and they are widely used in many fields such as environmental monitoring. Graphene is a new type of two-dimensional crystal material that has many excellent properties including large specific surface area, high conductivity, and high Young’s modulus. These features make it ideally suitable for application for gas sensors. In this paper, the main characteristics of gas sensor are firstly introduced, followed by the preparation methods and properties of graphene. In addition, the development process and the state of graphene gas sensors are introduced emphatically in terms of structure and performance of the sensor. The emergence of new candidates including graphene, polymer and metal/metal oxide composite enhances the performance of gas detection significantly. Finally, the clear direction of graphene gas sensors for the future is provided according to the latest research results and trends. It provides direction and ideas for future research. Full article
Show Figures

Figure 1

32 pages, 3614 KiB  
Review
Bimetallic Nanoparticles: Enhanced Magnetic and Optical Properties for Emerging Biological Applications
by Pannaree Srinoi, Yi-Ting Chen, Varadee Vittur, Maria D. Marquez and T. Randall Lee
Appl. Sci. 2018, 8(7), 1106; https://doi.org/10.3390/app8071106 - 09 Jul 2018
Cited by 191 | Viewed by 13136
Abstract
Metal nanoparticles are extensively studied due to their unique chemical and physical properties, which differ from the properties of their respective bulk materials. Likewise, the properties of heterogeneous bimetallic structures are far more attractive than those of single-component nanoparticles. For example, the incorporation [...] Read more.
Metal nanoparticles are extensively studied due to their unique chemical and physical properties, which differ from the properties of their respective bulk materials. Likewise, the properties of heterogeneous bimetallic structures are far more attractive than those of single-component nanoparticles. For example, the incorporation of a second metal into a nanoparticle structure influences and can potentially enhance the optical/plasmonic and magnetic properties of the material. This review focuses on the enhanced optical/plasmonic and magnetic properties offered by bimetallic nanoparticles and their corresponding impact on biological applications. In this review, we summarize the predominant structures of bimetallic nanoparticles, outline their synthesis methods, and highlight their use in biological applications, both diagnostic and therapeutic, which are dictated by their various optical/plasmonic and magnetic properties. Full article
(This article belongs to the Special Issue Biological Applications of Magnetic Nanoparticles)
Show Figures

Graphical abstract

33 pages, 3386 KiB  
Review
Review of Auxetic Materials for Sports Applications: Expanding Options in Comfort and Protection
by Olly Duncan, Todd Shepherd, Charlotte Moroney, Leon Foster, Praburaj D. Venkatraman, Keith Winwood, Tom Allen and Andrew Alderson
Appl. Sci. 2018, 8(6), 941; https://doi.org/10.3390/app8060941 - 06 Jun 2018
Cited by 199 | Viewed by 21226
Abstract
Following high profile, life changing long term mental illnesses and fatalities in sports such as skiing, cricket and American football—sports injuries feature regularly in national and international news. A mismatch between equipment certification tests, user expectations and infield falls and collisions is thought [...] Read more.
Following high profile, life changing long term mental illnesses and fatalities in sports such as skiing, cricket and American football—sports injuries feature regularly in national and international news. A mismatch between equipment certification tests, user expectations and infield falls and collisions is thought to affect risk perception, increasing the prevalence and severity of injuries. Auxetic foams, structures and textiles have been suggested for application to sporting goods, particularly protective equipment, due to their unique form-fitting deformation and curvature, high energy absorption and high indentation resistance. The purpose of this critical review is to communicate how auxetics could be useful to sports equipment (with a focus on injury prevention), and clearly lay out the steps required to realise their expected benefits. Initial overviews of auxetic materials and sporting protective equipment are followed by a description of common auxetic materials and structures, and how to produce them in foams, textiles and Additively Manufactured structures. Beneficial characteristics, limitations and commercial prospects are discussed, leading to a consideration of possible further work required to realise potential uses (such as in personal protective equipment and highly conformable garments). Full article
(This article belongs to the Special Issue Sports Materials)
Show Figures

Figure 1

29 pages, 2531 KiB  
Review
A State-of-the-Art Review of Nanoparticles Application in Petroleum with a Focus on Enhanced Oil Recovery
by Madhan Nur Agista, Kun Guo and Zhixin Yu
Appl. Sci. 2018, 8(6), 871; https://doi.org/10.3390/app8060871 - 25 May 2018
Cited by 198 | Viewed by 14512
Abstract
Research on nanotechnology application in the oil and gas industry has been growing rapidly in the past decade, as evidenced by the number of scientific articles published in the field. With oil and gas reserves harder to find, access, and produce, the pursuit [...] Read more.
Research on nanotechnology application in the oil and gas industry has been growing rapidly in the past decade, as evidenced by the number of scientific articles published in the field. With oil and gas reserves harder to find, access, and produce, the pursuit of more game-changing technologies that can address the challenges of the industry has stimulated this growth. Nanotechnology has the potential to revolutionize the petroleum industry both upstream and downstream, including exploration, drilling, production, and enhanced oil recovery (EOR), as well as refinery processes. It provides a wide range of alternatives for technologies and materials to be utilized in the petroleum industry. Nanoscale materials in various forms such as solid composites, complex fluids, and functional nanoparticle-fluid combinations are key to the new technological advances. This paper aims to provide a state-of-the-art review on the application of nanoparticles and technology in the petroleum industry, and focuses on enhanced oil recovery. We briefly summarize nanotechnology application in exploration and reservoir characterization, drilling and completion, production and stimulation, and refinery. Thereafter, this paper focuses on the application of nanoparticles in EOR. The different types of nanomaterials, e.g., silica, aluminum oxides, iron oxide, nickel oxide, titanium oxide, zinc oxide, zirconium oxide, polymers, and carbon nanotubes that have been studied in EOR are discussed with respect to their properties, their performance, advantages, and disadvantages. We then elaborate upon the parameters that will affect the performance of nanoparticles in EOR, and guidelines for promising recovery factors are emphasized. The mechanisms of the nanoparticles in the EOR processes are then underlined, such as wettability alteration, interfacial tension reduction, disjoining pressure, and viscosity control. The objective of this review is to present a wide range of knowledge and expertise related to the nanotechnology application in the petroleum industry in general, and the EOR process in particular. The challenges and future research directions for nano-EOR are pinpointed. Full article
(This article belongs to the Special Issue Nanotech for Oil and Gas)
Show Figures

Figure 1

17 pages, 6453 KiB  
Review
Overview of Lithium-Ion Battery Modeling Methods for State-of-Charge Estimation in Electrical Vehicles
by Jinhao Meng, Guangzhao Luo, Mattia Ricco, Maciej Swierczynski, Daniel-Ioan Stroe and Remus Teodorescu
Appl. Sci. 2018, 8(5), 659; https://doi.org/10.3390/app8050659 - 25 Apr 2018
Cited by 211 | Viewed by 17590
Abstract
As a critical indictor in the Battery Management System (BMS), State of Charge (SOC) is closely related to the reliable and safe operation of lithium-ion (Li-ion) batteries. Model-based methods are an effective solution for accurate and robust SOC estimation, the performance of which [...] Read more.
As a critical indictor in the Battery Management System (BMS), State of Charge (SOC) is closely related to the reliable and safe operation of lithium-ion (Li-ion) batteries. Model-based methods are an effective solution for accurate and robust SOC estimation, the performance of which heavily relies on the battery model. This paper mainly focuses on battery modeling methods, which have the potential to be used in a model-based SOC estimation structure. Battery modeling methods are classified into four categories on the basis of their theoretical foundations, and their expressions and features are detailed. Furthermore, the four battery modeling methods are compared in terms of their pros and cons. Future research directions are also presented. In addition, after optimizing the parameters of the battery models by a Genetic Algorithm (GA), four typical battery models including a combined model, two RC Equivalent Circuit Model (ECM), a Single Particle Model (SPM), and a Support Vector Machine (SVM) battery model are compared in terms of their accuracy and execution time. Full article
(This article belongs to the Special Issue Battery Management and State Estimation)
Show Figures

Figure 1

15 pages, 2546 KiB  
Review
Polydimethylsiloxane (PDMS)-Based Flexible Resistive Strain Sensors for Wearable Applications
by Jing Chen, Jiahong Zheng, Qinwu Gao, Jinjie Zhang, Jinyong Zhang, Olatunji Mumini Omisore, Lei Wang and Hui Li
Appl. Sci. 2018, 8(3), 345; https://doi.org/10.3390/app8030345 - 28 Feb 2018
Cited by 186 | Viewed by 18713
Abstract
There is growing attention and rapid development on flexible electronic devices with electronic materials and sensing technology innovations. In particular, strain sensors with high elasticity and stretchability are needed for several potential applications including human entertainment technology, human–machine interface, personal healthcare, and sports [...] Read more.
There is growing attention and rapid development on flexible electronic devices with electronic materials and sensing technology innovations. In particular, strain sensors with high elasticity and stretchability are needed for several potential applications including human entertainment technology, human–machine interface, personal healthcare, and sports performance monitoring, etc. This article presents recent advancements in the development of polydimethylsiloxane (PDMS)-based flexible resistive strain sensors for wearable applications. First of all, the article shows that PDMS-based stretchable resistive strain sensors are successfully fabricated by different methods, such as the filtration method, printing technology, micromolding method, coating techniques, and liquid phase mixing. Next, strain sensing performances including stretchability, gauge factor, linearity, and durability are comprehensively demonstrated and compared. Finally, potential applications of PDMS-based flexible resistive strain sensors are also discussed. This review indicates that the era of wearable intelligent electronic systems has arrived. Full article
Show Figures

Figure 1

16 pages, 2249 KiB  
Review
Inkjet-Printed and Paper-Based Electrochemical Sensors
by Ryan P. Tortorich, Hamed Shamkhalichenar and Jin-Woo Choi
Appl. Sci. 2018, 8(2), 288; https://doi.org/10.3390/app8020288 - 14 Feb 2018
Cited by 99 | Viewed by 12370
Abstract
It is becoming increasingly more important to provide a low-cost point-of-care diagnostic device with the ability to detect and monitor various biological and chemical compounds. Traditional laboratories can be time-consuming and very costly. Through the combination of well-established materials and fabrication methods, it [...] Read more.
It is becoming increasingly more important to provide a low-cost point-of-care diagnostic device with the ability to detect and monitor various biological and chemical compounds. Traditional laboratories can be time-consuming and very costly. Through the combination of well-established materials and fabrication methods, it is possible to produce devices that meet the needs of many patients, healthcare and medical professionals, and environmental specialists. Existing research has demonstrated that inkjet-printed and paper-based electrochemical sensors are suitable for this application due to advantages provided by the carefully selected materials and fabrication method. Inkjet printing provides a low cost fabrication method with incredible control over the material deposition process, while paper-based substrates enable pump-free microfluidic devices due to their natural wicking ability. Furthermore, electrochemical sensing is incredibly selective and provides accurate and repeatable quantitative results without expensive measurement equipment. By merging each of these favorable techniques and materials and continuing to innovate, the production of low-cost point-of-care sensors is certainly within reach. Full article
(This article belongs to the Special Issue Printed Electronics 2017)
Show Figures

Figure 1

Other

22 pages, 930 KiB  
Perspective
Making Sense of Light: The Use of Optical Spectroscopy Techniques in Plant Sciences and Agriculture
by Ana M. Cavaco, Andrei B. Utkin, Jorge Marques da Silva and Rui Guerra
Appl. Sci. 2022, 12(3), 997; https://doi.org/10.3390/app12030997 - 19 Jan 2022
Cited by 15 | Viewed by 3812
Abstract
As a result of the development of non-invasive optical spectroscopy, the number of prospective technologies of plant monitoring is growing. Being implemented in devices with different functions and hardware, these technologies are increasingly using the most advanced data processing algorithms, including machine learning [...] Read more.
As a result of the development of non-invasive optical spectroscopy, the number of prospective technologies of plant monitoring is growing. Being implemented in devices with different functions and hardware, these technologies are increasingly using the most advanced data processing algorithms, including machine learning and more available computing power each time. Optical spectroscopy is widely used to evaluate plant tissues, diagnose crops, and study the response of plants to biotic and abiotic stress. Spectral methods can also assist in remote and non-invasive assessment of the physiology of photosynthetic biofilms and the impact of plant species on biodiversity and ecosystem stability. The emergence of high-throughput technologies for plant phenotyping and the accompanying need for methods for rapid and non-contact assessment of plant productivity has generated renewed interest in the application of optical spectroscopy in fundamental plant sciences and agriculture. In this perspective paper, starting with a brief overview of the scientific and technological backgrounds of optical spectroscopy and current mainstream techniques and applications, we foresee the future development of this family of optical spectroscopic methodologies. Full article
(This article belongs to the Special Issue Applications of Optical Spectroscopy in Plant Sciences)
Show Figures

Figure 1

11 pages, 1346 KiB  
Letter
Small Object Detection in Optical Remote Sensing Images via Modified Faster R-CNN
by Yun Ren, Changren Zhu and Shunping Xiao
Appl. Sci. 2018, 8(5), 813; https://doi.org/10.3390/app8050813 - 18 May 2018
Cited by 211 | Viewed by 13160
Abstract
The PASCAL VOC Challenge performance has been significantly boosted by the prevalently CNN-based pipelines like Faster R-CNN. However, directly applying the Faster R-CNN to the small remote sensing objects usually renders poor performance. To address this issue, this paper investigates on how to [...] Read more.
The PASCAL VOC Challenge performance has been significantly boosted by the prevalently CNN-based pipelines like Faster R-CNN. However, directly applying the Faster R-CNN to the small remote sensing objects usually renders poor performance. To address this issue, this paper investigates on how to modify Faster R-CNN for the task of small object detection in optical remote sensing images. First of all, we not only modify the RPN stage of Faster R-CNN by setting appropriate anchors but also leverage a single high-level feature map of a fine resolution by designing a similar architecture adopting top-down and skip connections. In addition, we incorporate context information to further boost small remote sensing object detection performance while we apply a simple sampling strategy to solve the issue about the imbalanced numbers of images between different classes. At last, we introduce a simple yet effective data augmentation method named ‘random rotation’ during training. Experimental results show that our modified Faster R-CNN algorithm improves the mean average precision by a large margin on detecting small remote sensing objects. Full article
Show Figures

Figure 1

Back to TopTop