A Review of AlGaN-Based Deep-Ultraviolet Light-Emitting Diodes on Sapphire
Abstract
:Featured Application
Abstract
1. Introduction
1.1. General Overview
1.2. Outlines and Objective of This Review
2. Groups Manufacturing AlGaN-Based DUV-LEDs
3. Crystal Quality of AlGaN on AlN
4. Attempted Improvements of AlN on Sapphire to Obtain TDD Less Than 109/cm2
4.1. Epitaxial Lateral Overgrowth (ELO) and Patterned Sapphire Substrate (PSS)
4.2. Growth of Thick AlN Layer
4.3. Use of High Miscut Sapphire
5. Reflective p- and n-Electrodes
5.1. Transparent p-Cladding Layer and Reflective p-Contact
5.2. Interdigital Reflective n-Contact
6. Factors Inhibited Light Extraction at the Interfaces with Different Refractive Indices
7. Present Simple Bare Die
8. Packaging for DUV-LEDs
9. EL Output Measurement for DUV-LEDs
10. DUV-LED Layers with Uneven QWs Grown on Macrosteps
11. EQEs, WPEs and IQEs of AlGaN-Based Bare Dies with Uneven QWs
12. Reliable DUV-LEDs with Uneven QWs
13. Characteristic Behaviors of Uneven QWs
13.1. Redshift of EL Spectra with Increasing Number of Macrosteps
13.2. EL Spectral Broadening with Increase in EL Output for the Same TDD
14. IQEs of AlGaN-Based Uneven QWs
15. Prospects for EQE and WPE with Advanced Packaging
16. Frontiers of Current AlGaN-Based DUV-LEDs
17. W/cm2-Class Irradiation Modules and Applications
18. General Conclusions and Future Outlook
Author Contributions
Funding
Conflicts of Interest
References
- Rattanakul, S.; Oguma, K. Inactivation kinetics and efficiencies of UV-LEDs against Pseudomonas aeruginosa, Legionella pneumophila, and surrogate microorganisms. Water Res. 2018, 130, 31–37. [Google Scholar] [CrossRef] [PubMed]
- Rattanakul, S.; Oguma, K. Analysis of Hydroxyl Radicals and Inactivation Mechanisms of Bacteriophage MS2 in Response to a Simultaneous Application of UV and Chlorine. Environ. Sci. Technol. 2017, 51, 455–462. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Li, Z.; Lan, J.; Yan, Y.; Zhu, N. Kinetics of inactivation and photoreactivation of Escherichia coli using ultrasound-enhanced UV-C light-emitting diodes disinfection. Ultrason. Sonochem. 2017, 35, 471–477. [Google Scholar] [CrossRef] [PubMed]
- Gassie, L.W.; Englehardt, J.D. Advanced oxidation and disinfection processes for onsite net-zero greywater reuse: A review. Water Res. 2017, 125, 384–399. [Google Scholar] [CrossRef] [PubMed]
- Okamura, H.; Niizeki, S.; Ochi, T.; Matsumoto, A. UV Curable Formulations for UV-C LEDs. J. Photopolym. Sci. Technol. 2016, 29, 99–104. [Google Scholar] [CrossRef] [Green Version]
- Okamura, H.; Matoba, T.; Takada, K.; Yamashita, M.; Shirai, M.; Matsumoto, A. Photo-thermal Dual Curing of Acrylic Anchor Resins for Screen Printing. Progr. Org. Coat. 2016, 100, 47–50. [Google Scholar] [CrossRef]
- Murakmi, M.; Morita, A.; Seite, S.; Haamann-Stermann, T.; Grether-Beck, S.; Krutmann, J. Environment-induced lentigines: Formation of solar lentigines beyond ultraviolet radiation. Exp. Dermatol. 2015, 24, 407–411. [Google Scholar] [CrossRef]
- Yamazaki, S.; Nishioka, A.; Kasuya, S.; Ohkura, N.; Hemmi, H.; Kaisho, T.; Taguchi, O.; Sakaguchi, S.; Morita, A. Homeostasis of Thymus-Derived Foxp3(+) Regulatory T Cells Is Controlled by Ultraviolet B Exposure in the Skin. J. Immunol. 2014, 193, 5488–5497. [Google Scholar] [CrossRef] [PubMed]
- Fujishima, A.; Zhang, X.T. Titanium dioxide photocatalysis: Present situation and future approaches. C. R. Chim. 2006, 9, 750–760. [Google Scholar] [CrossRef]
- Fujishima, A.; Rao, T.N.; Tryk, D.A. Titanium dioxide photocatalysis. J. Photochem. Photobiol. C Photochem. Rev. 2000. [Google Scholar] [CrossRef]
- Tomson, R.; Uhlin, F.; Fridolin, I. Urea Rebound Assessment Based on UV Absorbance in Spent Dialysate. Asaio J. 2014, 60, 459–465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uhlin, F.; Fridolin, I.; Lindberg, L.G.; Magnusson, M. Estimating total urea removal and protein catabolic rate by monitoring UV absorbance in spent dialysate. Nephrol. Dial. Transp. 2005, 20, 2458–2464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaneda, M.; Pernot, C.; Nagasawa, Y.; Hirano, A.; Ippommatsu, M.; Honda, Y.; Amano, H.; Akasaki, I. Uneven AlGaN multiple quantum well for deep-ultraviolet LEDs grown on macrosteps and impact on electroluminescence spectral output. Jpn. J. Appl. Phys. 2017, 56, 061002. [Google Scholar] [CrossRef]
- Yamada, K.; Furusawan, Y.; Nagai, S.; Hirano, A.; Ippommatsu, M.; Aosaki, K.; Morishima, N.; Amano, H.; Akasaki, I. Development of underfilling and encapsulation for deep-ultraviolet LEDs. Appl. Phys. Express 2015, 8, 012101. [Google Scholar] [CrossRef]
- Nagai, S.; Yamada, K.; Hirano, A.; Ippommatsu, M.; Ito, M.; Morishima, N.; Aosaki, K.; Honda, Y.; Amano, H.; Akasaki, I. Development of highly durable deep-ultraviolet AlGaN-based LED multichip array with hemispherical encapsulated structures using a selected resin through a detailed feasibility study. Jpn. J. Appl. Phys. 2016, 55, 082101. [Google Scholar] [CrossRef]
- Kneissl, M. A Brief Review of III-Nitride UV Emitter Technologies and Their Applications. In III-Nitride Ultraviolet Emitters; Kneissl, M., Rass, J., Eds.; Springer International Publishing AG: Cham, Switzerland, 2016; pp. 1–25. ISBN 978-3-319-24100-5. [Google Scholar]
- Grandusky, J.R.; Chen, J.F.; Gibb, S.R.; Mendrick, M.C.; Moe, C.G.; Rodak, L.; Garrett, G.A.; Wraback, M.; Schowalter, L.J. 270 nm Pseudomorphic Ultraviolet Light-Emitting Diodes with Over 60 mW Continuous Wave Output Power. Appl. Phys. Express 2013, 6, 032101. [Google Scholar] [CrossRef]
- Inoue, S.; Naoki, T.; Kinoshita, T.; Obata, T.; Yanagi, H. Light extraction enhancement of 265 nm deep-ultraviolet light-emitting diodes with over 90 mW output power via an AlN hybrid nanostructure. Appl. Phys. Lett. 2015, 106, 131104. [Google Scholar] [CrossRef]
- Fujioka, A.; Asada, K.; Yamada, H.; Ohtsuka, T.; Ogawa, T.; Kosugi, T.; Kishikawa, D.; Mukai, T. High-output-power 255/280/310 nm deep ultraviolet light-emitting diodes and their lifetime characteristics. Semicond. Sci. Technol. 2014, 29, 084005. [Google Scholar] [CrossRef]
- Ichikawa, M.; Fujioka, A.; Kosugi, T.; Endo, S.; Sagawa, H.; Tamaki, H.; Mukai, T.; Uomoto, M.; Shimatsu, T. High-output-power deep ultraviolet light-emitting diode assembly using direct bonding. Appl. Phys. Express 2016, 9, 072101. [Google Scholar] [CrossRef]
- Takano, T.; Mino, T.; Sakai, J.; Noguchi, N.; Tsubaki, K.; Hirayama, H. Deep-ultraviolet light-emitting diodes with external quantum efficiency higher than 20% at 275 nm achieved by improving light-extraction efficiency. Appl. Phys. Express 2017, 10, 031002. [Google Scholar] [CrossRef]
- Hirano, A.; Ippommatsu, M. Tanpachou shigaisen LED no jitsuyouka. Oyobutsuri 2017, 86, 234–237. (In Japanese) [Google Scholar]
- Chitnis, A.; Zhang, J.P.; Adivarahan, V.; Shatalov, M.; Wu, S.; Pachipulusu, R.; Mandavilli, V.; Khan, M.A. Improved performance of 325-nm emission AlGaN ultraviolet light-emitting diodes. Appl. Phys. Lett. 2003, 82, 2565–2567. [Google Scholar] [CrossRef]
- Shatalov, M.; Sun, W.H.; Jain, R.; Lunev, A.; Hu, X.H.; Dobrinsky, A.; Bilenko, Y.; Yang, J.W.; Garrett, G.A.; Rodak, L.E.; et al. High power AlGaN ultraviolet light emitters. Semicond. Sci. Technol. 2014, 29, 084007. [Google Scholar] [CrossRef]
- Shatalov, M.; Sun, W.H.; Lunev, A.; Hu, X.H.; Dobrinsky, A.; Bilenko, Y.; Yang, J.W.; Shur, M.; Gaska, R.; Moe, C.; Garrett, G.; Wraback, M. AlGaN Deep-Ultraviolet Light-Emitting Diodes with External Quantum Efficiency above 10%. Appl. Phys. Express 2012, 5, 082101. [Google Scholar] [CrossRef]
- Shatalov, M.; Sun, W.H.; Bilenko, Y.; Sattu, A.; Hu, X.H.; Deng, J.Y.; Yang, J.W.; Shur, M.; Moe, C.; Wraback, M.; Gaska, R. Large Chip High Power Deep Ultraviolet Light-Emitting Diodes. Appl. Phys. Express 2010, 3, 062101. [Google Scholar] [CrossRef]
- Hwang, S.; Morgan, D.; Kesler, A.; Lachab, M.; Zhang, B.; Heidari, A.; Nazir, H.; Ahmad, I.; Dion, J.; Fareed, Q.; et al. 276 nm Substrate-Free Flip-Chip AlGaN Light-Emitting Diodes. Appl. Phys. Express 2011, 4, 032102. [Google Scholar] [CrossRef]
- Hwang, S.; Islam, M.; Zhang, B.; Lachab, M.; Dion, J.; Heidari, A.; Nazir, H.; Adivarahan, V.; Khan, A. A Hybrid Micro-Pixel Based Deep Ultraviolet Light-Emitting Diode Lamp. Appl. Phys. Express 2011, 4, 012102. [Google Scholar] [CrossRef]
- Grandusky, J.R.; Gibb, S.R.; Mendrick, M.C.; Moe, C.; Wraback, M.; Schowalter, L.J. High Output Power from 260nm Pseudomorphic Ultraviolet Light-Emitting Diodes with Improved Thermal Performance. Appl. Phys. Express 2011, 4, 082101. [Google Scholar] [CrossRef]
- Kinoshita, T.; Obata, T.; Nagashima, T.; Yanagi, H.; Moody, B.; Mita, S.; Inoue, S.; Kumagai, Y.; Koukitu, A.; Sitar, Z. Performance and Reliability of Deep-Ultraviolet Light-Emitting Diodes Fabricated on AlN Substrates Prepared by Hydride Vapor Phase Epitaxy. Appl. Phys. Express 2013, 6, 092103. [Google Scholar] [CrossRef]
- Imura, M.; Nakano, K.; Narita, G.; Fujimoto, N.; Okada, N.; Balakrishnan, K.; Iwaya, M.; Kamiyama, S.; Amano, H.; Akasaki, I.; et al. Epitaxial lateral overgrowth of AlN on trench-patterned AlN layers. J. Cryst. Growth 2007, 298, 257–260. [Google Scholar] [CrossRef]
- Kato, N.; Sato, S.; Sumii, T.; Fujimoto, N.; Okada, N.; Imura, M.; Balakrishnan, K.; Iwaya, M.; Kamiyama, S.; Amano, H.; et al. High-speed growth of AlGaN having high-crystalline quality and smooth surface by high-temperature MOVPE. J. Cryst. Growth 2007, 298, 215–218. [Google Scholar] [CrossRef]
- Okada, N.; Kato, N.; Sato, S.; Sumii, T.; Fujimoto, N.; Imura, M.; Balakrishnan, K.; Iwaya, M.; Kamiyama, S.; Amano, H.; et al. Epitaxial lateral overgrowth of a-AlN layer on patterned a-AlN template by HT-MOVPE. J. Cryst. Growth 2007, 300, 141–144. [Google Scholar] [CrossRef]
- Nagamatsu, K.; Okada, N.; Sugimura, H.; Tsuzuki, H.; Mori, F.; Iida, K.; Bando, A.; Iwaya, M.; Kamiyama, S.; Amano, H.; et al. High-efficiency AlGaN-based UV light-emitting diode on laterally overgrown AlN. J. Cryst. Growth 2008, 310, 2326–2329. [Google Scholar] [CrossRef]
- Tsuzuki, H.; Mori, F.; Takeda, K.; Ichikawa, T.; Iwaya, M.; Kamiyama, S.; Amano, H.; Akasaki, I.; Yoshida, H.; Kuwabara, M.; et al. High-performance UV emitter grown on high-crystalline-quality AlGaN underlying layer. Phys. Stat. Solidi A 2009, 206, 1199–1204. [Google Scholar] [CrossRef]
- Tsuzuki, H.; Mori, F.; Takeda, K.; Iwya, M.; Kamiyama, S.; Amano, H.; Akasaki, I.; Yoshida, H.; Kuwabara, M.; Yamashita, Y.; et al. Novel UV devices on high-quality AlGaN using grooved underlying layer. J. Cryst. Growth 2009, 311, 2860–2863. [Google Scholar] [CrossRef]
- Pernot, C.; Kim, M.; Fukahori, S.; Inazu, T.; Fujita, T.; Nagasawa, Y.; Hirano, A.; Ippommatsu, M.; Iwaya, M.; Kamiyama, S.; et al. Improved Efficiency of 255-280 nm AlGaN-Based Light-Emitting Diodes. Appl. Phys. Express 2010, 3, 061004. [Google Scholar] [CrossRef]
- Pernot, C.; Fukahori, S.; Inazu, T.; Fujita, T.; Kim, M.; Nagasawa, Y.; Hirano, A.; Ippommatsu, M.; Iwaya, M.; Kamiyama, S.; et al. Development of high efficiency 255-355nm AlGaN-based light-emitting diodes. Phys. Stat. Solidi A 2011, 208, 1594–1596. [Google Scholar] [CrossRef]
- Kim, M.; Fujita, T.; Fukahori, S.; Inazu, T.; Pernot, C.; Nagasawa, Y.; Hirano, A.; Ippommatsu, M.; Iwaya, M.; Takeuchi, T.; et al. AlGaN-Based Deep Ultraviolet Light-Emitting Diodes Fabricated on Patterned Sapphire Substrates. Appl. Phys. Express 2011, 4, 092102. [Google Scholar] [CrossRef]
- Inazu, T.; Fukahori, S.; Pernot, C.; Kim, M.H.; Fujita, T.; Nagasawa, Y.; Hirano, A.; Ippommatsu, M.; Iwaya, M.; Takeuchi, T.; et al. Improvement of Light Extraction Efficiency for AlGaN-Based Deep Ultraviolet Light-Emitting Diodes. Jpn. J. Appl. Phys. 2011, 50, 122101. [Google Scholar] [CrossRef]
- Hirayama, H.; Maeda, N.; Fujikawa, S.; Toyoda, S.; Kamata, N. Recent progress and future prospects of AlGaN-based high-efficiency deep-ultraviolet light-emitting diodes. Jpn. J. Appl. Phys. 2014, 53, 100209. [Google Scholar] [CrossRef] [Green Version]
- Jo, M.; Maeda, N.; Hirayama, H. Enhanced light extraction in 260 nm light-emitting diode with a highly transparent p-AlGaN layer. Appl. Phys. Express 2016, 9, 012102. [Google Scholar] [CrossRef]
- Kashima, Y.; Maeda, N.; Matsuura, E.; Jo, M.; Iwai, T.; Morita, T.; Kokubo, M.; Tashiro, T.; Kamimura, R.; Osada, Y.; et al. High external quantum efficiency (10%) AlGaN-based deep-ultraviolet light-emitting diodes achieved by using highly reflective photonic crystal on p-AlGaN contact layer. Appl. Phys. Express 2018, 11, 012101. [Google Scholar] [CrossRef]
- Hirayama, H.; Noguchi, N.; Kamata, N. 222 nm Deep-Ultraviolet AlGaN Quantum Well Light-Emitting Diode with Vertical Emission Properties. Appl. Phys. Express 2010, 3, 032102. [Google Scholar] [CrossRef]
- Hirayama, H.; Tsukada, Y.; Maeda, T.; Kamata, N. Marked Enhancement in the Efficiency of Deep-Ultraviolet AlGaN Light-Emitting Diodes by Using a Multiquantum-Barrier Electron Blocking Layer. Appl. Phys. Express 2010, 3, 031002. [Google Scholar] [CrossRef]
- Fujioka, A.; Misaki, T.; Murayama, T.; Narukawa, Y.; Mukai, T. Improvement in Output Power of 280-nm Deep Ultraviolet Light-Emitting Diode by Using AlGaN Multi Quantum Wells. Appl. Phys. Express 2010, 3, 041001. [Google Scholar] [CrossRef]
- Susilo, N.; Hagedorn, S.; Jaeger, D.; Miyake, H.; Zeimer, U.; Reich, C.; Neuschulz, B.; Sulmoni, L.; Guttmann, M.; Mehnke, F.; Kuhn, C.; et al. AlGaN-based deep UV LEDs grown on sputtered and high temperature annealed AlN/sapphire. Appl. Phys. Lett. 2018, 112, 041110. [Google Scholar] [CrossRef]
- Enslin, J.; Mehnke, F.; Mogilatenko, A.; Bellmann, K.; Guttmann, M.; Kuhn, C.; Rass, J.; Lobo-Ploch, N.; Wernicke, T.; Weyers, M.; et al. Metamorphic Al0.5Ga0.5N:Si on AlN/sapphire for the growth of UVB LEDs. J. Cryst. Growth 2017, 464, 185–189. [Google Scholar] [CrossRef]
- Mehnke, F.; Kuhn, C.; Guttmann, M.; Reich, C.; Kolbe, T.; Kueller, V.; Knauer, A.; Lapeyrade, M.; Einfeldt, S.; Rass, J.; et al. Efficient charge carrier injection into sub-250nm AlGaN multiple quantum well light emitting diodes. Appl. Phys. Lett. 2014, 105, 051113. [Google Scholar] [CrossRef]
- Lee, K.H.; Park, H.J.; Kim, S.H.; Asadirad, M.; Moon, Y.T.; Kwak, J.S.; Ryou, J.H. Light-extraction efficiency control in AlGaN-based deep-ultraviolet flip-chip light-emitting diodes: A comparison to InGaN-based visible flip-chip light-emitting diodes. Opt. Express 2015, 23, 20340–20349. [Google Scholar] [CrossRef] [PubMed]
- Fayisa, G.B.; Lee, J.W.; Kim, J.; Kim, Y.I.; Park, Y.; Kim, J.K. Enhanced light extraction efficiency of micro-ring array AlGaN deep ultraviolet light-emitting diodes. Jpn. J. Appl. Phys. 2017, 56, 092101. [Google Scholar] [CrossRef]
- Lee, D.; Lee, J.W.; Jang, J.; Shin, I.S.; Jin, L.; Park, J.H.; Kim, J.; Lee, J.; Noh, H.S.; Kim, Y.I.; et al. Improved performance of AlGaN-based deep ultraviolet light-emitting diodes with nano-patterned AlN/sapphire substrates. Appl. Phys. Lett. 2017, 110, 191103. [Google Scholar] [CrossRef]
- Yue, J.S.; Gao, Y.; Zhang, G.H.; Liu, Y. Light power enhancement of violet LEDs using AlGaN-based epitaxial structure. Appl. Mech. Mater. 2013, 331, 572–577. [Google Scholar] [CrossRef]
- Wu, J. High Power High Efficiency DUV LEDs and Applications. Presented at LED TAIWAN 2016, Taipei, Taiwan, 14 April 2016. [Google Scholar]
- Zhou, T.Y.; Raghothamachar, B.; Wu, F.Z.; Dalmau, R.; Moody, B.; Craft, S.; Schlesser, R.; Dudley, M.; Sitar, Z. Characterization of Threading Dislocations in PVT-Grown AlN Substrates via x-Ray Topography and Ray Tracing Simulation. J. Electron. Mater. 2014, 43, 838–842. [Google Scholar] [CrossRef]
- Bondokov, R.T.; Mueller, S.G.; Morgan, K.E.; Slack, G.A.; Schujman, S.; Wood, M.C.; Smart, J.A.; Schowalter, L.J. Large-area AlN substrates for electronic applications: An industrial perspective. J. Cryst. Growth 2008, 310, 4020–4026. [Google Scholar] [CrossRef]
- Schowalter, L.J.; Schujman, S.B.; Liu, W.; Goorsky, M.; Wood, M.C.; Grandusky, J.; Shahedipour-Sandvik, F. Development of native, single crystal AlN substrates for device applications. Phys. Stat. Solidi A 2006, 203, 1667–1671. [Google Scholar] [CrossRef]
- Collazo, R.; Xie, J.Q.; Gaddy, B.E.; Bryan, Z.; Kirste, R.; Hoffmann, M.; Dalmau, R.; Moody, B.; Kumagai, Y.; Nagashima, T.; et al. On the origin of the 265 nm absorption band in AlN bulk crystals. Appl. Phys. Lett. 2012, 100, 191914. [Google Scholar] [CrossRef]
- Slack, G.A.; Schowalter, L.J.; Morelli, D.; Freitas, J.A. Some effects of oxygen impurities on AlN and GaN. J. Cryst. Growth 2002, 246, 287–298. [Google Scholar] [CrossRef]
- Bryan, Z.; Bryan, I.; Xie, J.Q.; Mita, S.; Sitar, Z.; Collazo, R. High internal quantum efficiency in AlGaN multiple quantum wells grown on bulk AlN substrates. Appl. Phys. Lett. 2015, 106, 142107. [Google Scholar] [CrossRef]
- Moe, C.G.; Garrett, G.A.; Grandusky, J.R.; Chen, J.F.; Rodak, L.E.; Rotella, P.; Wraback, M.; Schowalter, L.J. Correlation between optical and electrical performance of mid-ultraviolet light-emitting diodes on AlN substrates. Phys. Stat. Solidi C 2014, 11, 786–789. [Google Scholar] [CrossRef]
- Grandusky, J.R.; Gibb, S.R.; Mendrick, M.; Schowalter, L.J. Reliability and performance of pseudomorphic ultraviolet light emitting diodes on bulk aluminum nitride substrates. Phys. Statud Solidi C 2011, 8, 1528–1533. [Google Scholar] [CrossRef]
- Nakamura, S.; Mukai, T. High-quality InGaN films grown on GaN films. Jpn. J. Appl. Phys. 1992, 31, L1457–L1459. [Google Scholar] [CrossRef]
- Nakamura, S.; Senoh, M.; Mukai, T. High-power InGaN/GaN double-heterostructure violet-light- emitting-diodes. Appl. Phys. Lett. 1993, 62, 2390–2392. [Google Scholar] [CrossRef]
- Nakamura, S.; Mukai, T.; Senoh, M. High-brightness InGaN/AlGaN double-heterostructure blue-green-light emitting diodes. J. Appl. Phys. 1994, 76, 8189–8191. [Google Scholar] [CrossRef]
- Nakamura, S.; Senoh, N.; Iwasa, N.; Nagashima, S. High-brightness InGaN blue, green and yellow light-emitting-diodes with quantum-well strucrtures. Jpn. J. Appl. Phys. 1995, 34, L797–L799. [Google Scholar] [CrossRef]
- Nakamura, S.; Senoh, M.; Nagahama, S.; Iwasa, N.; Yamada, T.; Matsushita, T.; Sugimoto, Y.; Kiyoku, H. Room-temperature continuous-wave operation of InGaN multi-quantum-well structure laser diodes. Appl. Phys. Lett. 1996, 69, 4056–4058. [Google Scholar] [CrossRef]
- Nakamura, S.; Senoh, M.; Nagahama, S.; Iwasa, N.; Yamada, T.; Matsushita, T.; Kiyoku, H.; Sugimoto, Y.; Kozaki, T.; Umemoto, H.; et al. Violet InGaN/GaN/AlGaN-based laser diodes with an output power of 420 mW. Jpn. J. Appl. Phys. 1998, 37, L627–L629. [Google Scholar] [CrossRef]
- Zhang, J.P.; Khan, M.A.; Sun, W.H.; Wang, H.M.; Chen, C.Q.; Fareed, Q.; Kuokstis, E.; Yang, J.W. Pulsed atomic-layer epitaxy of ultrahigh-quality AlxGa1-xN structures for deep ultraviolet emissions below 230 nm. Appl. Phys. Lett. 2002, 81, 4392–4394. [Google Scholar] [CrossRef]
- Hirayama, H.; Yatabe, T.; Noguchi, N.; Ohashi, T.; Kamata, N. 231-261 nm AlGaN deep-ultraviolet light-emitting diodes fabricated on AlN multilayer buffers grown by ammonia pulse-flow method on sapphire. Appl. Phys. Lett. 2007, 91, 071901. [Google Scholar] [CrossRef]
- Banal, R.G.; Funato, M.; Kawakami, Y. Growth characteristics of AlN on sapphire substrates by modified migration-enhanced epitaxy. J. Cryst. Growth 2009, 311, 2834–2836. [Google Scholar] [CrossRef] [Green Version]
- Imura, M.; Nakano, K.; Fujimoto, N.; Okada, N.; Balakrishnan, K.; Iwaya, M.; Kamiyama, S.; Amano, H.; Akasaki, I.; Noro, T.; et al. Dislocations in AIN epilayers grown on sapphire substrate by high-temperature metal-organic vapor phase epitaxy. Jpn. J. Appl. Phys. 2007, 46, 1458–1462. [Google Scholar] [CrossRef]
- Balakrishnan, K.; Bandoh, A.; Iwaya, M.; Kamiyama, S.; Amano, H.; Akasaki, I. Influence of high temperature in the growth of low dislocation content AlN bridge layers on patterned 6H-SiC substrates by metalorganic vapor phase epitaxy. Jpn. J. Appl. Phys. 2007, 46, L307–L310. [Google Scholar] [CrossRef]
- Miyake, H.; Nishio, G.; Suzuki, S.; Hiramatsu, K.; Fukuyama, H.; Kaur, J.; Kuwano, N. Annealing of an AlN buffer layer in N-2-CO for growth of a high-quality AlN film on sapphire. Appl. Phys. Express 2016, 9, 025501. [Google Scholar] [CrossRef]
- Fukuyama, H.; Miyake, H.; Nishio, G.; Suzuki, S.; Hiramatsu, K. Impact of high-temperature annealing of AlN layer on sapphire and its thermodynamic principle. Jpn. J. Appl. Phys. 2016, 55, 05FL02. [Google Scholar] [CrossRef]
- Miyake, H.; Lin, C.H.; Tokoro, K.; Hiramatsu, K. Preparation of high-quality AlN on sapphire by high-temperature face-to-face annealing. J. Cryst. Growth 2016, 456, 155–159. [Google Scholar] [CrossRef]
- Ban, K.; Yamamoto, J.; Takeda, K.; Ide, K.; Iwaya, M.; Takeuchi, T.; Kamiyama, S.; Akasaki, I.; Amano, H. Internal Quantum Efficiency of Whole-Composition-Range AlGaN Multiquantum Wells. Appl. Phys. Express 2011, 4, 052101. [Google Scholar] [CrossRef]
- Ren, Z.Y.; Sun, Q.; Kwon, S.Y.; Han, J.; Davitt, K.; Song, Y.K.; Nurmikko, A.V.; Liu, W.; Smart, J.; Schowalter, L. AlGaN deep ultraviolet LEDs on bulk AIN substrates. Heteroepitaxy of AlGaN on bulk AlN substrates for deep ultraviolet light emitting diodes. Phys. Status Solidi C 2007, 4, 2482–2485. [Google Scholar] [CrossRef]
- Ren, Z.; Sun, Q.; Kwon, S.Y.; Han, J.; Davitt, K.; Song, Y.K.; Nurmikko, A.V.; Cho, H.K.; Liu, W.; Smart, J.A.; Schowalter, L.J. Heteroepitaxy of AlGaN on bulk AlN substrates for deep ultraviolet light emitting diodes. Appl. Phys. Lett. 2007, 91, 051116. [Google Scholar] [CrossRef] [Green Version]
- Grandusky, J.R.; Smart, J.A.; Mendrick, M.C.; Schowalter, L.J.; Chen, K.X.; Schubert, E.F. Pseudomorphic growth of thick n-type AlxGa1-xN layers on low-defect-density bulk AlN substrates for UV LED applications. J. Cryst. Growth 2009, 311, 2864–2866. [Google Scholar] [CrossRef]
- Chichibu, S.F.; Miyake, H.; Hiramtsu, K.; Uedono, A. Impacts of Dislocations and Point Defects on the Internal Quantum Efficiency of the Near-Band-Edge Emission in AlGaN-Based DUV Light-Emitting Materials. In III-Nitride Ultraviolet Emitters: Technology and Applications; Kneissl, M., Rass, J., Eds.; Springer: Berlin, Germany, 2016; Volume 227, pp. 115–136. ISBN 978-3-319-24100-5. [Google Scholar]
- Chichibu, S.F.; Miyake, H.; Ishikawa, Y.; Tashiro, M.; Ohtomo, T.; Furusawa, K.; Hazu, K.; Hiramatsu, K.; Uedono, A. Impacts of Si-doping and resultant cation vacancy formation on the luminescence dynamics for the near-band-edge emission of Al0.6Ga0.4N films grown on AlN templates by metalorganic vapor phase epitaxy. J. Appl. Phys. 2013, 113, 213506. [Google Scholar] [CrossRef]
- Chichibu, S.F.; Wada, K.; Mullhauser, J.; Brandt, O.; Ploog, K.H.; Mizutani, T.; Setoguchi, A.; Nakai, R.; Sugiyama, M.; Nakanishi, H.; et al. Evidence of localization effects in InGaN single-quantum-well ultraviolet light-emitting diodes. Appl. Phys. Lett. 2000, 76, 1671–1673. [Google Scholar] [CrossRef]
- Chichibu, S.F.; Azuhata, T.; Sota, T.; Mukai, T.; Nakamura, S. Localized quantum well excitons in InGaN single-quantum-well amber light-emitting diodes. J. Appl. Phys. 2000, 88, 5153–5157. [Google Scholar] [CrossRef]
- Chichibu, S.; Wada, K.; Nakamura, S. Spatially resolved cathodoluminescence spectra of InGaN quantum wells. Appl. Phys. Lett. 1997, 71, 2346–2348. [Google Scholar] [CrossRef]
- Murotani, H.; Yamada, Y.; Taguchi, T.; Ishibashi, A.; Kawaguchi, Y.; Yokogawa, T. Temperature dependence of localized exciton transitions in AlGaN ternary alloy epitaxial layers. J. Appl. Phys. 2008, 104, 053514. [Google Scholar] [CrossRef]
- Murotani, H.; Saito, T.; Kato, N.; Yamada, Y.; Taguchi, T. Localization-induced inhomogeneous screening of internal electric fields in AlGaN-based quantum wells. Appl. Phys. Lett. 2007, 91, 231910. [Google Scholar] [CrossRef]
- Murotani, H.; Yamada, Y.; Taguchi, T.; Kato, R.; Yokogawa, T. Exciton localization in Al-rich AlGaN ternary alloy epitaxial layers. Phys. Status Solidi C 2010, 7, 7–8. [Google Scholar] [CrossRef]
- Murotani, H.; Akase, D.; Anai, K.; Yamada, Y.; Miyake, H.; Hiramatsu, K. Dependence of internal quantum efficiency on doping region and Si concentration in Al-rich AlGaN quantum wells. Appl. Phys. Lett. 2012, 101, 042110. [Google Scholar] [CrossRef]
- Amano, H.; Sawaki, N.; Akasaki, I. Metalorganic vapor phase epitaxial growth of high quality GaN film using an AlN buffer layer. Appl. Phys. Lett. 1986, 48, 353–355. [Google Scholar] [CrossRef]
- Nakamura, S. GaN growth using GaN buffer layer. Jpn. J. Appl. Phys. 1991, 30, L1705–L1707. [Google Scholar] [CrossRef]
- Nakamura, S.; Senoh, M.; Nagahama, S.; Iwasa, N.; Yamada, T.; Matsushita, T.; Kiyoku, H.; Sugimoto, Y.; Kozaki, T.; Umemoto, H.; et al. High-power, long-lifetime InGaN/GaN/AlGaN-based laser diodes grown on pure GaN substrates. Jpn. J. Appl. Phys. 1998, 37, L309–L312. [Google Scholar] [CrossRef]
- Linthicum, K.; Gehrke, T.; Thomson, D.; Carlson, E.; Rajagopal, P.; Smith, T.; Batchelor, D.; Davis, R. Pendeoepitaxy of gallium nitride thin films. Appl. Phys. Lett. 1999, 75, 196–198. [Google Scholar] [CrossRef]
- Bohyama, S.; Miyake, H.; Hiramatsu, K.; Tsuchida, Y.; Maeda, T. Freestanding GaN substrate by advanced facet-controlled epitaxial lateral overgrowth technique with masking side facets. Jpn. J. Appl. Phys. 2005, 44, L24–L26. [Google Scholar] [CrossRef]
- Zhou, S.Z.; Wang, H.Y.; Lin, Z.T.; Yang, H.; Hong, X.S.; Li, G.Q. Study of defects in LED epitaxial layers grown on the optimized hemispherical patterned sapphire substrates. Jpn. J. Appl. Phys. 2014, 53, 025503. [Google Scholar] [CrossRef]
- Jeong, S.M.; Kissinger, S.; Kim, D.W.; Lee, S.J.; Kim, J.S.; Ahn, H.K.; Lee, C.R. Characteristic enhancement of the blue LED chip by the growth and fabrication on patterned sapphire (0001) substrate. J. Cryst. Growth 2010, 312, 258–262. [Google Scholar] [CrossRef]
- Motoki, K.; Okahisa, T.; Matsumoto, N.; Matsushima, M.; Kimura, H.; Kasai, H.; Takemoto, K.; Uematsu, K.; Hirano, T.; Nakayama, M.; et al. Preparation of large freestanding GaN substrates by hydride vapor phase epitaxy using GaAs as a starting substrate. Jpn. J. Appl. Phys. 2001, 40, L140–L143. [Google Scholar] [CrossRef]
- Motoki, K.; Okahisa, T.; Nakahata, S.; Matsumoto, N.; Kimura, H.; Kasai, H.; Takemoto, K.; Uematsu, K.; Ueno, M.; Kumagai, Y.; et al. Growth and characterization of freestanding GaN substrates. J. Cryst. Growth 2002, 237, 912–921. [Google Scholar] [CrossRef]
- Chitnis, A.; Adivarahan, V.; Zhang, J.P.; Shatalov, M.; Wu, S.; Yang, J.; Simin, G.; Khan, M.A.; Hu, X.; Fareed, Q.; et al. Milliwatt power AlGaN quantum well deep ultraviolet light emitting diodes. Phys. Status Solidi A 2003, 200, 99–101. [Google Scholar] [CrossRef]
- Chen, Z.; Fareed, R.S.Q.; Gaevski, M.; Adivarahan, V.; Yang, J.W.; Khan, A.; Mei, J.; Ponce, F.A. Pulsed lateral epitaxial overgrowth of aluminum nitride on sapphire substrates. Appl. Phys. Lett. 2006, 89, 081905. [Google Scholar] [CrossRef]
- Nakano, K.; Imura, M.; Narita, G.; Kitano, T.; Hirosel, Y.; Fujimoto, N.; Okada, N.; Kawashima, T.; Iida, K.; Balakrishnan, K.; et al. Epitaxial lateral overgrowth of AlN layers on patterned sapphire substrates. Phys. Status Solidi A 2006, 203, 1632–1635. [Google Scholar] [CrossRef]
- Tran, B.T.; Hirayama, H.; Jo, M.; Maeda, N.; Inoue, D.; Kikitsu, T. High-quality AlN template grown on a patterned Si(111) substrate. J. Cryst. Growth 2017, 468, 225–229. [Google Scholar] [CrossRef]
- Tran, B.T.; Maeda, N.; Jo, M.; Inoue, D.; Kikitsu, T.; Hirayama, H. Performance Improvement of AIN Crystal Quality Grown on Patterned Si(111) Substrate for Deep UV-LED Applications. Sci. Rep. 2016, 6, 35681. [Google Scholar] [CrossRef] [PubMed]
- Kumagai, Y.; Akiyama, K.; Togashi, R.; Murakami, H.; Takeuchi, M.; Kinoshita, T.; Takada, K.; Aoyagi, Y.; Koukitu, A. Polarity dependence of AlN {0001} decomposition in flowing H-2. J. Cryst. Growth 2007, 305, 366–371. [Google Scholar] [CrossRef]
- Takeuchi, M.; Shimizu, H.; Kajitani, R.; Kawasaki, K.; Kinoshita, T.; Takada, K.; Murakami, H.; Kumagai, Y.; Koukitu, A.; Koyama, T.; et al. Al- and N-polar AlN layers grown on c-plane sapphire substrates by modified flow-modulation MOCVD. J. Cryst. Growth 2007, 305, 360–365. [Google Scholar] [CrossRef]
- Huang, D.; Visconti, P.; Jones, K.M.; Reshchikov, M.A.; Yun, F.; Baski, A.A.; King, T.; Morkoc, H. Dependence of GaN polarity on the parameters of the buffer layer grown by molecular beam epitaxy. Appl. Phys. Lett. 2001, 78, 4145–4147. [Google Scholar] [CrossRef]
- Sumiya, M.; Yoshimura, K.; Ogusu, N.; Fuke, S.; Mizuno, K.; Yoshimoto, M.; Koinuma, H.; Romano, L.T.J. Effect of buffer-layer engineering on the polarity of GaN films. Vac. Sci. Technol. A 2002, 20, 456–458. [Google Scholar] [CrossRef]
- Wu, X.H.; Fini, P.; Tarsa, E.J.; Heying, B.; Keller, S.; Mishra, U.K.; DenBaars, S.P.; Speck, J.S. Dislocation generation in GaN heteroepitaxy. J. Cryst. Growth 1998, 189, 231–243. [Google Scholar] [CrossRef]
- Nagamatsu, K.; Okada, N.; Kato, N.; Sumii, T.; Bandoh, A.; Iwaya, M.; Kamiyama, S.; Amano, H.; Akasaki, I. Effect of c-plane sapphire misorientation on the growth of AlN by high-temperature MOVPE. Phys. Status Solidi C 2008, 5, 3048–3050. [Google Scholar] [CrossRef]
- Okada, N.; Kato, N.; Sato, S.; Sumii, T.; Nagai, T.; Fujimoto, N.; Imura, M.; Balakrishnan, K.; Iwaya, M.; Kamiyama, S.; et al. Growth of high-quality and crack free AlN layers on sapphire substrate by multi-growth mode modification. J. Cryst. Growth 2007, 298, 349–353. [Google Scholar] [CrossRef]
- Shen, X.Q.; Matsuhara, H.; Okumura, H. Reduction of the threading dislocation density in GaN films grown on vicinal sapphire (0001) substrates. Appl. Phys. Lett. 2005, 86, 021912. [Google Scholar] [CrossRef]
- Shen, X.Q.; Shimizu, M.; Okumura, H. Impact of Vicinal Sapphire (0001) Substrates on the High-Quality AlN Films by Plasma-Assisted Molecular Beam Epitaxy. Jpn. J. Appl. Phys. 2003, 42, L1293–L1295. [Google Scholar] [CrossRef]
- Hirayama, H.; Fujikawa, S.; Noguchi, N.; Norimatsu, J.; Takano, T.; Tsubaki, K.; Kamata, N. 222–282 nm AlGaN and InAlGaN-based deep-UV LEDs fabricated on high-quality AlN on sapphire. Phys. Status Solidi A 2008, 206, 1176–1182. [Google Scholar] [CrossRef]
- Maeda, N.; Hirayama, H. Realization of high-efficiency deep-UV LEDs using transparent p-AlGaN contact layer. Phys. Status Solidi C 2013, 10, 1521–1524. [Google Scholar] [CrossRef]
- Zhang, Y.W.; Krishnamoorthy, S.; Johnson, J.M.; Akyol, F.; Allerman, A.; Moseley, M.W.; Armstrong, A.; Hwang, J.; Rajan, S. Interband tunneling for hole injection in III-nitride ultraviolet emitters. Appl. Phys. Lett. 2015, 141103. [Google Scholar] [CrossRef]
- Zhang, Y.W.; Krishnamoorthy, S.; Akyol, F.; Bajaj, S.; Allerman, A.A.; Moseley, M.W.; Armstrong, A.M.; Rajan, S. Tunnel-injected sub-260nm ultraviolet light emitting diodes. Appl. Phys. Lett. 2017, 110, 201102. [Google Scholar] [CrossRef]
- Zhang, Y.W.; Krishnamoorthy, S.; Akyol, F.; Johnson, J.M.; Allerman, A.A.; Moseley, M.W.; Armstrong, A.M.; Hwang, J.; Rajan, S. Reflective metal/semiconductor tunnel junctions for hole injection in AlGaN UV LEDs. Appl. Phys. Lett. 2017, 111, 051104. [Google Scholar] [CrossRef] [Green Version]
- Verma, J.; Islam, S.M.; Protasenko, V.; Kandaswamy, P.K.; Xing, H.L.; Jena, D. Tunnel-injection quantum dot deep-ultraviolet light-emitting diodes with polarization-induced doping in III-nitride heterostructures. Appl. Phys. Lett. 2014, 104, 021105. [Google Scholar] [CrossRef]
- Zhao, S.; Sadaf, S.M.; Vanka, S.; Wang, Y.; Rashid, R.; Mi, Z. Sub-milliwatt AlGaN nanowire tunnel junction deep ultraviolet light emitting diodes on silicon operating at 242 nm. Appl. Phys. Lett. 2016, 109, 201106. [Google Scholar] [CrossRef]
- Kinoshita, T.; Obata, T.; Yanagi, H.; Inoue, S. High p-type conduction in high-Al content Mg-doped AlGaN. Appl. Phys. Lett. 2013, 102, 012105. [Google Scholar] [CrossRef]
- Kim, H.K.; Seong, T.Y.; Adesida, I.; Tang, C.W.; Lau, K.M. Low-resistance Pt/Pd/Au ohmic contacts to p-type AlGaN. Appl. Phys. Lett. 2004, 84, 1710–1712. [Google Scholar] [CrossRef]
- Mori, K.; Takeda, K.; Kusafuka, T.; Iwaya, M.; Takeuchi, T.; Kamiyama, S.; Akasaki, I.; Amano, H. Low-ohmic-contact-resistance V-based electrode for n-type AlGaN with high AlN molar fraction. Jpn. J. Appl. Phys. 2016, 55, 05FL03. [Google Scholar] [CrossRef]
- Katsuno, T.; Liu, Y.H.; Li, D.B.; Miyake, H.; Hiramatsu, K.; Shibata, T.; Tanaka, M. N-type conductivity control of AlGaN with high Al mole fraction. Phys. Status Solidi C 2006, 3, 1435–1438. [Google Scholar] [CrossRef]
- Kasugai, H.; Miyake, Y.; Honshio, A.; Mishima, S.; Kawashima, T.; Iida, K.; Iwaya, M.; Kamiyama, S.; Amano, H.; Akasaki, I.; et al. High-efficiency nitride-based light-emitting diodes with moth-eye structure. Jpn. J. Appl. Phys. 2005, 44, 7414–7417. [Google Scholar] [CrossRef]
- Brunner, D.; Angerer, H.; Bustarret, E.; Freudenberg, F.; Hopler, R.; Dimitrov, R.; Ambacher, O.; Stutzmann, M. Optical constants of epitaxial AlGaN films and their temperature dependence. J. Appl. Phys. 1997, 82, 5090–5096. [Google Scholar] [CrossRef]
- Amano, H.; Kamiyama, S.; Kim, M.; Pernot, C.; Hirano, A. Method of Producing Template for Epitaxial Growth Having a Sapphire (0001) Substrate, an Initial-Stage AlN Layer and Laterally Overgrown AlxGa1-xN (0001) Layer. PCT/JP2009/071541. U.S. Patent 8,659,031, 7 June 2010. [Google Scholar]
- Home Page of Nikkiso Co., Ltd. Available online: https://www.nikkiso.co.jp/technology/project/duv-led.html (accessed on 3 April 2018).
- Tsujishita, M.; Hirano, A. Two-dimensional quenching lifetime measurement of OH:A2Σ+(v’ = 1) and NO: A2 Σ+(v’ = 0) in atmospheric-pressure flames. Appl. Phys. B 1996, 62, 255–262. [Google Scholar] [CrossRef]
- Yoshida, H.; Kuwabara, M.; Yamashita, Y.; Uchiyama, K.; Kan, H. Radiative and nonradiative recombination in an ultraviolet GaN/AlGaN multiple-quantum-well laser diode. Appl. Phys. Lett. 2010, 96, 211122. [Google Scholar] [CrossRef]
- Mickevicius, J.; Jurkevicius, J.; Tamulaitis, G.; Shur, M.S.; Shatalov, M.; Yang, J.W.; Gaska, R. Influence of carrier localization on high-carrier-density effects in AlGaN quantum wells. Opt. Express 2014, 22, A491–A497. [Google Scholar] [CrossRef] [PubMed]
- Hirano, A.; Nagasawa, Y.; Ippommatsu, M.; Aosaki, K.; Honda, Y.; Amano, H.; Akasaki, I. Development of AlGaN-based deep-ultraviolet (DUV) LEDs focusing on the fluorine resin encapsulation and the prospect of the practical applications. Proc. SPIE 2016, 9926, 99260C. [Google Scholar] [CrossRef]
- Bhattacharyya, A.; Moustakas, T.D.; Zhou, L.; Smith, D.J.; Hug, W. Deep ultraviolet emitting AlGaN quantum wells with high internal quantum efficiency. Appl. Phys. Lett. 2009, 99, 181907. [Google Scholar] [CrossRef]
- Shatalov, M.; Yang, J.W.; Sun, W.H.; Kennedy, R.; Gaska, R.; Liu, K.; Shur, M.; Tamulaitis, G. Efficiency of light emission in high aluminum content AlGaN quantum wells. J. Appl. Phys. 2009, 105, 073103. [Google Scholar] [CrossRef]
- Banal, R.G.; Funato, M.; Kawakami, Y. Extremely high internal quantum efficiencies from AlGaN/AlN quantum wells emitting in the deep ultraviolet spectral region. Appl. Phys. Lett. 2011, 99, 011902. [Google Scholar] [CrossRef] [Green Version]
- Banal, R.G.; Funato, M.; Kawakami, Y. Characteristics of high Al-content AlGaN/AlN quantum wells fabricated by modified migration enhanced epitaxy. Phys. Status Solidi C 2010, 7, 7–8. [Google Scholar] [CrossRef]
- Funato, M.; Kawakami, Y.; Kyoto University, Japan. Personal communication, 2017.
- Bryan, Z.; Bryan, I.; Mita, S.; Tweedie, J.; Sitar, Z.; Collazo, R. Strain dependence on polarization properties of AlGaN and AlGaN-based ultraviolet lasers grown on AlN substrates. Appl. Phys. Lett. 2015, 106, 232101. [Google Scholar] [CrossRef]
- Kataoka, K.; Funato, M.; Kawakami, Y. Development of polychromatic ultraviolet light-emitting diodes based on three-dimensional AlGaN quantum wells. Appl. Phys. Express 2017, 10, 212001. [Google Scholar] [CrossRef]
- Yamada, K.; Nagasawa, Y.; Nagai, S.; Hirano, A.; Ippommatsu, M.; Aosaki, K.; Honda, Y.; Amano, H.; Akasaki, I. Study on the Main-Chain Structure of Amorphous Fluorine Resins for Encapsulating AlGaN-Based DUV-LEDs. Phys. Status Solidi A 2018, 1700525. [Google Scholar] [CrossRef]
- Nam, K.B.; Li, J.; Nakarmi, M.L.; Lin, J.Y.; Jiang, H.X. Unique optical properties of AlGaN alloys and related ultraviolet emitters. Appl. Phys. Lett. 2004, 84, 5254–5266. [Google Scholar] [CrossRef]
- Taniyasu, Y.; Kasu, M. Polarization property of deep-ultraviolet light emission from C-plane AlN/GaN short-period superlattices. Appl. Phys. Lett. 2011, 99, 251112. [Google Scholar] [CrossRef]
- Zhang, J.; Zhao, H.P.; Tansu, N. Large optical gain AlGaN-delta-GaN quantum wells laser active regions in mid-and deep-ultraviolet spectral regimes. Appl. Phys. Lett. 2011, 98, 171111. [Google Scholar] [CrossRef]
- Xie, J.Q.; Mita, S.; Bryan, Z.; Guo, W.; Hussey, L.; Moody, B.; Schlesser, R.; Kirste, R.; Gerhold, M.; Collazo, R.; Sitar, Z. Lasing and longitudinal cavity modes in photo-pumped deep ultraviolet AlGaN heterostructures. Appl. Phys. Lett. 2013, 102, 171102. [Google Scholar] [CrossRef]
- Li, X.H.; Kao, T.T.; Satter, M.M.; Wei, Y.O.; Wang, S.; Xie, H.E.; Shen, S.C.; Yoder, P.D.; Fischer, A.M.; Ponce, F.A.; et al. Demonstration of transverse-magnetic deep-ultraviolet stimulated emission from AlGaN multiple-quantum-well lasers grown on a sapphire substrate. Appl. Phys. Lett. 2015, 106. [Google Scholar] [CrossRef]
- Lachab, M.; Sun, W.H.; Jain, R.; Dobrinsky, A.; Gaevski, M.; Rumyantsev, S.; Shur, M.; Shatalov, M. Optical polarization control of photo-pumped stimulated emissions at 238 nm from AlGaN multiple-quantum-well laser structures on AlN substrates. Appl. Phys. Express 2017, 10, 012702. [Google Scholar] [CrossRef]
- Djavid, M.; Mi, Z.T. Enhancing the light extraction efficiency of AlGaN deep ultraviolet light emitting diodes by using nanowire structures. Appl. Phys. Lett. 2016, 108, 051102. [Google Scholar] [CrossRef]
- Islam, S.M.; Protasenko, V.; Rouvimov, S.; Xing, H.; Jena, D. Sub-230nm deep-UV emission from GaN quantum disks in AlN grown by a modified Stranski-Krastanov mode. Jpn. J. Appl. Phys. 2016, 55, 05FF06. [Google Scholar] [CrossRef]
- Islam, S.M.; Lee, K.V.; Verma, J.; Protasenko, V.; Rouvimov, S.; Bharadwaj, S.; Xing, H.; Jena, D. MBE-grown 232-270nm deep-UV LEDs using monolayer thin binary GaN/AlN quantum heterostructures. Appl. Phys. Lett. 2017, 110, 041108. [Google Scholar] [CrossRef]
- Islam, S.M.; Protasenko, V.; Lee, K.; Rouvimov, S.; Verma, J.; Xing, H.L.; Jena, D. Deep-UV emission at 219 nm from ultrathin MBE GaN/AlN quantum heterostructures. Appl. Phys. Lett. 2017, 111, 091104. [Google Scholar] [CrossRef] [Green Version]
- Hirano, A. Tanpacho shigaisen LED no jitsuyouka ni tomonau oyotenkai no tenboh. Hikari Alliance 2017, 28, 54–59. (In Japanese) [Google Scholar]
Root of Science Venture | Start Up Company | Large Company or Alliance Partners | Substrate | Option | Refs. |
---|---|---|---|---|---|
RPI 1 Univ. South Carolina | SETi Nitek | Seoul Viosys(KR) | Sapphire | EM | [24,25,26,27,28] |
RPI 1 | Crystal IS | Asahi Kasei(JP) | AlN | +R | [17,29] |
North Carolina State Univ. | Hexatech Adroit | Tokuyama(JP) → 3 Stanley(JP) | AlN | +HVPE +R | [18,30] |
Rayvio | Sapphire | ||||
Nagoya Univ. Meijo Univ. | UV Craftory | Nikkiso(JP) +FPG(TW) | Sapphire | CHT | [13,31,32,33,34,35,36,37,38,39,40] |
RIKEN | NGK(JP) → 3 Dowa(JP) Panasonic(JP) | Sapphire | EM | [19,41,42,43,44,45] | |
Nichia(JP) | Sapphire | [20,21,46] | |||
Toyoda Gosei(JP) | Sapphire | ||||
FBH 2 TU Berlin | UV Photonics | [47,48,49] | |||
Siemens AGDE) | |||||
Bioraytron | HPL (TW) +Epileds(TW) | Sapphire | |||
LG Innotek(KR) | Sapphire | +LLO | [50] | ||
Samsung(KR) | Sapphire | [51,52] | |||
QD Jason(CN) | Sapphire | EM | [53,54] |
CIE/LEE (%) | 266 nm | 271 nm | 283 nm | 298 nm |
---|---|---|---|---|
100/10 | (35) | (38) | 61 | 60 |
90/10 | (39) | 42 | 68 | 67 |
80/10 | 43 | 48 | 76 | 75 |
70/10 | 50 | 54 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nagasawa, Y.; Hirano, A. A Review of AlGaN-Based Deep-Ultraviolet Light-Emitting Diodes on Sapphire. Appl. Sci. 2018, 8, 1264. https://doi.org/10.3390/app8081264
Nagasawa Y, Hirano A. A Review of AlGaN-Based Deep-Ultraviolet Light-Emitting Diodes on Sapphire. Applied Sciences. 2018; 8(8):1264. https://doi.org/10.3390/app8081264
Chicago/Turabian StyleNagasawa, Yosuke, and Akira Hirano. 2018. "A Review of AlGaN-Based Deep-Ultraviolet Light-Emitting Diodes on Sapphire" Applied Sciences 8, no. 8: 1264. https://doi.org/10.3390/app8081264
APA StyleNagasawa, Y., & Hirano, A. (2018). A Review of AlGaN-Based Deep-Ultraviolet Light-Emitting Diodes on Sapphire. Applied Sciences, 8(8), 1264. https://doi.org/10.3390/app8081264