New Inhibitors for Overcoming Antimicrobial Resistance

A special issue of Antibiotics (ISSN 2079-6382).

Deadline for manuscript submissions: 31 March 2026 | Viewed by 2017

Special Issue Editors


E-Mail
Guest Editor
Department of Parasitology and Microbiology, Federal University of Piauí, Teresina, Brazil
Interests: resistance to antimicrobials; multidrug-resistant bacteria; efflux inhibitors; Staphylococcus aureus

E-Mail Website
Guest Editor
Unit of Medical Microbiology, Institute of Hygiene and Tropical Medicine, NOVA University Lisbon, Lisbon, Portugal
Interests: efflux-mediated antimicrobial resistance; efflux inhibitors; biofilms; Galleria mellonella infection model

Special Issue Information

Dear Colleagues,

Antimicrobial resistance (AMR) is a serious public health problem. Infections caused by multidrug-resistant strains often require prolonged patient hospitalization, combined antibiotic therapy, and, often, intensive care, placing a heavy burden on health systems. Several mechanisms contribute to AMR, such as efflux, reduced permeability, enzymatic degradation/modification of the antimicrobial, and target modification or protection. Biofilms are complex bacterial communities that also play a role in resilience to antibiotic therapy. Inhibitors of these mechanisms, e.g., efflux inhibitors, could be potential therapeutic agents when used in combination with antimicrobials, recovering their efficacy against MDR strains. This Special Issue will highlight recent developments in new AMR inhibitors from natural or synthetic sources, with a particular focus on efflux and related resistance mechanisms, such as reduced permeability and biofilms. We welcome new studies on new compounds or drugs already approved for use as potential inhibitors, aiming at their possible repurposing for use as antibiotic adjuvants. Reviews and studies characterizing efflux systems in bacteria, fungi, and protozoa, as well as the interplay between efflux and other resistance mechanisms, are also appreciated. Studies on the development of inhibitors of other mechanisms are also welcome.

Dr. Humberto Medeiros Barreto
Dr. Sofia Santos Costa
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 250 words) can be sent to the Editorial Office for assessment.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Antibiotics is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • antimicrobial resistance
  • resistance mechanisms
  • inhibitors
  • enzymatic inhibitors
  • efflux
  • biofilms

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

18 pages, 2638 KB  
Article
Repurposing MK-8245 as a Quorum Sensing Inhibitor to Suppress Virulence and Potentiate Antibiotic Activity in Pseudomonas aeruginosa
by Giulia Bernabè, Giovanni Marzaro, Mahmoud Elsayed Mosaad Shalata, Daniela Iosob, Valentina Inglima, Massimo Bellato, Ignazio Castagliuolo and Paola Brun
Antibiotics 2025, 14(11), 1116; https://doi.org/10.3390/antibiotics14111116 - 5 Nov 2025
Viewed by 647
Abstract
Background/Objectives: The rise in multidrug-resistant pathogens such as Pseudomonas aeruginosa (PA), coupled with declining antibiotic development, underscores the need for innovative therapeutic strategies. Repurposing approved drugs provides advantages of safety and rapid development. Since quorum sensing (QS) controls key virulence traits in [...] Read more.
Background/Objectives: The rise in multidrug-resistant pathogens such as Pseudomonas aeruginosa (PA), coupled with declining antibiotic development, underscores the need for innovative therapeutic strategies. Repurposing approved drugs provides advantages of safety and rapid development. Since quorum sensing (QS) controls key virulence traits in PA, targeting this pathway represents a promising antivirulence approach. This study aimed to identify and repurpose existing drugs as QS inhibitors. Methods: An in silico docking screen of 3000 FDA-approved or clinically tested compounds was performed against the C4-HSL receptor RhlR. Seventeen candidates were tested in the laboratory strain PAO1 for lactone-dependent signaling inhibition. The most active compound, MK-8245, was further evaluated for effects on growth, cytotoxicity, lactone release, biofilm formation, pyocyanin, elastase, rhamnolipids, and swarming motility. Its activity was also assessed in 20 clinical PA isolates. Results: MK-8245 (40 µM) reduced QS-regulated gene expression by ~60% without affecting viability. In PAO1, it inhibited rhamnolipids (60%), pyocyanin (40%), elastase (25%), biofilm formation, and swarming motility (25%). MK-8245 also enhanced the efficacy of imipenem against biofilms. In clinical isolates, it consistently decreased lactone release (~60%), pyocyanin (~50%), rhamnolipids (~40%), biofilm formation (~30%), and swarming motility (~25%). Conclusions: MK-8245 emerges as a promising antivirulence candidate against P. aeruginosa. By disrupting QS signaling and impairing multiple virulence factors, it attenuates pathogenicity without bactericidal pressure. Its synergy with standard antibiotics and consistent activity in clinical isolates highlight its translational potential and warrant further preclinical evaluation. Full article
(This article belongs to the Special Issue New Inhibitors for Overcoming Antimicrobial Resistance)
Show Figures

Figure 1

14 pages, 1339 KB  
Article
Repurposed Drugs and Efflux Pump Inhibitors Against Gram-Negative Urinary Tract Pathogenic Bacteria
by Annamária Kincses, Márta Nové, Jina Asefi and Gabriella Spengler
Antibiotics 2025, 14(10), 988; https://doi.org/10.3390/antibiotics14100988 - 2 Oct 2025
Viewed by 984
Abstract
Background/Objectives: Urinary tract infections (UTIs) represent a major healthcare challenge due to antimicrobial resistance and biofilm formation. Our aim was to evaluate whether repurposed drugs and efflux pump inhibitors (EPIs) could provide alternative strategies by investigating their antibacterial, anti-biofilm, and resistance-modifying properties [...] Read more.
Background/Objectives: Urinary tract infections (UTIs) represent a major healthcare challenge due to antimicrobial resistance and biofilm formation. Our aim was to evaluate whether repurposed drugs and efflux pump inhibitors (EPIs) could provide alternative strategies by investigating their antibacterial, anti-biofilm, and resistance-modifying properties against Gram-negative uropathogens under varying pH conditions. Methods: Clinical isolates of Escherichia coli, Klebsiella pneumoniae, and Proteus mirabilis were tested. Minimum inhibitory concentrations (MICs) of thioridazine (TZ), promethazine (PMZ), fluoxetine (Fx), sertraline (Sr), phenylalanine arginine β-naphthylamide (PAβN), carbonyl cyanide m-chlorophenyl hydrazone (CCCP), and the glutamine uptake inhibitor V9302 were determined at pH 5–8. Biofilm inhibition was assessed by crystal violet staining, while MIC reduction assays tested antibiotic combinations. Efflux pump inhibition was examined using an ethidium bromide accumulation assay. Results: TZ reduced biofilm formation in sensitive K. pneumoniae at all pH levels and enhanced ciprofloxacin (CIP) activity, whereas PMZ showed a weaker effect, limited mainly to neutral pH. Fx and Sr exhibited pH-dependent anti-biofilm activity, with Fx particularly effective against P. mirabilis at alkaline pH. PAβN consistently decreased biofilm biomass in both sensitive and resistant K. pneumoniae and, at pH 7–8, potentiated CIP activity with a 16-fold MIC reduction in the sensitive strain. CCCP showed pH-dependent activity, with stronger effects under acidic conditions, notably in E. coli and P. mirabilis. V9302 was a potent biofilm inhibitor in K. pneumoniae and resistant E. coli and interfered with efflux activity, showing strong effects in acidic environments. Conclusions: Repurposed drugs and EPIs may be useful as antibiotic adjuvants or biofilm inhibitors in treating resistant UTIs. Full article
(This article belongs to the Special Issue New Inhibitors for Overcoming Antimicrobial Resistance)
Show Figures

Graphical abstract

Back to TopTop