Present and Future of Antibiotic Treatment for Carbapenem-Resistant Enterobacteriaceae

A special issue of Antibiotics (ISSN 2079-6382). This special issue belongs to the section "Antibiotic Therapy in Infectious Diseases".

Deadline for manuscript submissions: 30 September 2025 | Viewed by 1015

Special Issue Editor


E-Mail Website
Guest Editor
Department of Biomedical and Biotechnological Sciences (BIOMETEC), Medical Molecular Microbiology and Antibiotic Resistance Laboratory (MMARLab), University of Catania, Catania, Italy
Interests: bacteriological diagnostics; antibiotic sensibility; gram-negative bacteria

Special Issue Information

Dear Colleagues,

Carbapenem-resistant Enterobacteriaceae (CRE) infections have emerged as a major public health concern over the past few decades. The rise in CRE strains, characterized by their resistance to carbapenem antibiotics, has posed significant challenges in clinical management and treatment. As the arsenal of effective antibiotics continues to dwindle, it is imperative to explore new strategies and approaches to combat the threat of CRE infections.

This Special Issue aims to shed light on the present and future of antibiotic treatment for CRE, focusing on the latest research advancements, clinical trials, and therapeutic interventions. By bringing together research from various disciplines, including microbiology, pharmacology, and clinical medicine, this collection of articles aims to provide a comprehensive overview of the current landscape and prospects in the fight against CRE.

We invite researchers, clinicians, and industry professionals to contribute their insights and findings to this Special Issue. We will delve into the mechanisms underlying carbapenem resistance in Enterobacteriaceae, explore novel therapeutic targets and approaches, and discuss the challenges and opportunities in developing new antibiotics. Additionally, we will examine the role of alternative treatment options such as combination therapies, antimicrobial stewardship, and infection prevention and control measures. By fostering collaboration and knowledge exchange, we hope to catalyze advancements in antibiotic treatment for CRE and ultimately improve patient outcomes.

In addition, Dr. Dalida Bivona from the Biomedical and Biotechnological Sciences Department, University of Catania, will be a co-worker to help care for this Special Issue.

Dr. Dafne Bongiorno
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Antibiotics is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • carbapenem-resistant enterobacteriaceae
  • antibiotic treatment
  • antimicrobial resistance
  • infection prevention
  • novel therapeutic targets and approaches

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

17 pages, 2981 KiB  
Article
Frog Skin Peptides Hylin-a1, AR-23, and RV-23: Promising Tools Against Carbapenem-Resistant Escherichia coli and Klebsiella pneumoniae Infections
by Annalisa Chianese, Annalisa Ambrosino, Rosa Giugliano, Francesca Palma, Preetu Parimal, Marina Acunzo, Alessandra Monti, Nunzianna Doti, Carla Zannella, Massimiliano Galdiero and Anna De Filippis
Antibiotics 2025, 14(4), 374; https://doi.org/10.3390/antibiotics14040374 - 3 Apr 2025
Viewed by 415
Abstract
Background/Objectives. One of the pressing challenges in global public health is the rise in infections caused by carbapenem-resistant Enterobacteriaceae. Growing bacterial drug resistance, coupled with the slow development of new antibiotics, highlights the critical need to explore and develop new broad-spectrum antimicrobial agents [...] Read more.
Background/Objectives. One of the pressing challenges in global public health is the rise in infections caused by carbapenem-resistant Enterobacteriaceae. Growing bacterial drug resistance, coupled with the slow development of new antibiotics, highlights the critical need to explore and develop new broad-spectrum antimicrobial agents able to inhibit bacterial growth efficiently. In recent years, antimicrobial peptides (AMPs) have gained significant attention as a promising alternative to conventional drugs, owing to their antimicrobial potency, low toxicity, and reduced propensity for fostering resistance. Our research aims to investigate the antibacterial ability of three amphibian AMPs, namely Hylin-a1, AR-23, and RV-23, against both antibiotic-sensitive and carbapenem-resistant strains of Escherichia coli and Klebsiella pneumoniae. Methods. A 3-(4,5 dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay (MTT) was performed to identify non-cytotoxic concentrations of peptides. A microdilution assay evaluated the antibacterial effect, determining the peptides’ minimum inhibitory concentration (MIC). In addition, the checkerboard test analyzed the compounds’ synergistic effect with meropenem. Results. We demonstrated that peptides with low toxicity profile and resistance to proteolytic activity exhibited strong antibacterial activity, with MIC ranging from 6.25 to 25 μM. The antibiofilm mechanism of action of peptides was also investigated, suggesting that they had a crucial role during the biofilm formation step by inhibiting it. Finally, we highlighted the synergistic effects of peptides with meropenem. Conclusions. Our study identifies Hylin-a1, AR-23, and RV-23 as promising candidates against Gram-negative bacterial infections with a favorable therapeutic profile. This effect could be related to their great flexibility, as evidenced by circular dichroism data, confirming that the peptides could assume an α-helical conformation interacting with bacterial membranes. Full article
Show Figures

Figure 1

Back to TopTop