You are currently viewing a new version of our website. To view the old version click .

AI in Education

AI in Education is an international, peer-reviewed, scholarly, open access journal on both the theoretical and practical applications of artificial intelligence (AI) within educational environments published quarterly online by MDPI.

All Articles (3)

This study examines how cognitive biases may shape ethical decision-making in AI-mediated environments, particularly within education and research. As AI tools increasingly influence human judgment, biases such as normalization, complacency, rationalization, and authority bias can lead to ethical lapses, including academic misconduct, uncritical reliance on AI-generated content, and acceptance of misinformation. To explore these dynamics, we developed an LLM-generated synthetic behavior estimation framework that modeled six decision-making scenarios with probabilistic representations of key cognitive biases. The scenarios addressed issues ranging from loss of human agency to biased evaluations and homogenization of thought. Statistical summaries of the synthetic dataset indicated that 71% of agents engaged in unethical behavior influenced by biases like normalization and complacency, 78% relied on AI outputs without scrutiny due to automation and authority biases, and misinformation was accepted in 65% of cases, largely driven by projection and authority biases. These statistics are descriptive of this synthetic dataset only and are not intended as inferential claims about real-world populations. The findings nevertheless suggest the potential value of targeted interventions—such as AI literacy programs, systematic bias audits, and equitable access to AI tools—to promote responsible AI use. As a proof-of-concept, the framework offers controlled exploratory insights, but all reported outcomes reflect text-based pattern generation by an LLM rather than observed human behavior. Future research should validate and extend these findings with longitudinal and field data.

4 October 2025

The rise of generative AI in higher education has disrupted our traditional understandings of academic integrity, moving our focus from clear-cut infractions to evolving ethical judgment. In this study, a survey of 401 students from major U.S. universities provides insight into how beliefs, behaviors, and policy awareness intersect in shaping how students interact with AI-assisted writing. The findings indicate that students’ ethical beliefs—not institutional policies—are the strongest predictors of perceived misconduct and actual AI use in writing. Policy awareness was found to have no significant effect on ethical judgments or behavior. Instead, students who believe AI writing is cheating were found to be substantially less likely to view it as ethical or engage with it. These findings suggest that many students do not treat AI use in learning activities as an extension of conventional cheating (e.g., plagiarism), but rather as a distinct category of academic conduct/misconduct. Rather than using punitive models to attempt to punish students for using AI, this study suggests that education about AI ethics and the risk of AI overreliance may prove more successful for curbing unethical AI use in higher education.

2 September 2025

The rapid expansion of Artificial Intelligence in Education (AIED) has created both remarkable opportunities and pressing concerns. Applications of intelligent tutoring systems, learning analytics, generative models, and educational robotics illustrate the transformative momentum of the field, yet they also raise fundamental questions regarding ethics, equity, and sustainability. The mission of AI in Education (MDPI) is to provide a rigorous, interdisciplinary, and inclusive platform where these debates can unfold. The journal bridges pedagogy and engineering, welcomes both empirical evidence of positive impacts and critical examinations of systemic risks, and advances responsible innovation in real educational settings. By integrating methodological standards, governance perspectives, and pedagogical ethics, including teacher-centered validation approaches, AI in Education positions itself as a space for constructive dialogue that values both enthusiasm and critique. Above all, the journal is committed to a human-centered vision for AIED, so that innovation in classrooms remains grounded in care, responsibility, and educational purpose.

28 August 2025

News & Conferences

Issues

Open for Submission

Editor's Choice

Get Alerted

Add your email address to receive forthcoming issues of this journal.

XFacebookLinkedIn
AI in Education - ISSN 3042-8130Creative Common CC BY license