Special Issue "Verification Approaches for Nano- and Micro-Satellites"

A special issue of Aerospace (ISSN 2226-4310).

Deadline for manuscript submissions: 31 October 2019.

Special Issue Editors

Guest Editor
Prof. Paolo Tortora

Dipartimento di Ingegneria Industriale, Alma Mater Studiorum Università di Bologna, Bologna, Italy
Website | E-Mail
Phone: +390264483401
Interests: small satellites; innovative spacecraft subsystems including the ground segment; planetary exploration with particular reference to radio science experiments
Guest Editor
Prof. Dario Modenini

Dipartimento di Ingegneria Industriale, Alma Mater Studiorum Università di Bologna, Bologna, Italy
Website | E-Mail
Interests: design and testing in the field of microsatellites and space microsystems; methods for attitude determination and control; recursive filters; micropropulsion systems; test-bench for attitude determination and control systems of small satellites

Special Issue Information

Dear Colleagues,

There is growing interest for the development of light, small, high-performance spacecraft (S/C) platforms for a wide range of missions. In the early stages of the small-satellite era, both nano-satellites (<10 kg) and micro-satellites (>10 kg) were mainly intended for educational and technology demonstration goals. Nowadays, they are a consolidate means for Earth observation, where they are dramatically reducing the mission costs. We are now at a turning point, where nano-/micro-sat systems can accomplish interplanetary missions beyond the boundaries of LEO orbits (Low Earth Orbits). However, in spite of the substantial increase in low-mass satellites launched since 2013, several statistics show the low success rate of these COTS (commercial off-the-shelf)-based cost-driven systems. Only half of nano-satellites succeeded in mission operations after the successful launch in the last 15 years, but the success rate plunges for larger micro-satellites.

The low success rate of nano-satellites is acceptable, up to a certain extent for educational or technology demonstration missions. This may stem from the way in which university-led projects design and carry out the S/C ground verification process, which lacks repeatability and rigor routinely found in industry. However, despite a nano-satellite is relatively inexpensive, if the S/C is lunched for commercial or scientific exploration purposes, failure is not really an option.

What are the technical challenges and the programmatic difficulties to be faced in order to increase substantially the reliability of nano-/micro-sat missions? The historical causes of low-mass satellite failure can be traced back to (a) lack of system-level testing due to schedule and budget constraints, (b) inadequate thermal design and verification, and (c) use of COTS electronics. Clearly, rigorous ground verification approaches—tailoring the existing testing standards for traditional large/medium-class satellites—are needed to face effectively such challenges.

The topics for this Special Issue include both system analysis for future projects and in-flight experience from ongoing missions. Submission of manuscripts dealing with both subsystem and system-level Assembly Integration and Verification (AIV), with a focus on verification approach, verification methods, verification levels, verification stages, models philosophy and verification tools is encouraged. Papers also are sought which review recent research developments in comprehensive ground verification systems, including not only Software-in-the-Loop (SIL) and component-level Hardware-in-the-loop (HIL) tests, but also system-level HIL tests.

Prof. Paolo Tortora
Prof. Dario Modenini
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Aerospace is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1000 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Nanosatellites
  • Microsatellites
  • Assembly Integration and Verification
  • Ground Testing

Published Papers (5 papers)

View options order results:
result details:
Displaying articles 1-5
Export citation of selected articles as:

Research

Open AccessArticle
Solar Module Integrated Converters as Power Generator in Small Spacecrafts: Design and Verification Approach
Received: 18 April 2019 / Revised: 17 May 2019 / Accepted: 17 May 2019 / Published: 27 May 2019
PDF Full-text (4115 KB) | HTML Full-text | XML Full-text
Abstract
As small satellites are becoming more widespread for new businesses and applications, the development time, failure rate and cost of the spacecraft must be reduced. One of the systems with the highest cost and the most frequent failure in the satellite is the [...] Read more.
As small satellites are becoming more widespread for new businesses and applications, the development time, failure rate and cost of the spacecraft must be reduced. One of the systems with the highest cost and the most frequent failure in the satellite is the Electrical Power System (EPS). One approach to achieve rapid development times while reducing the cost and failure rate is using scalable modules. We propose a solar module integrated converter (SMIC) and its verification process as a key component for power generation in EPS. SMIC integrates the solar array, its regulators and the telemetry acquisition unit. This paper details the design and verification process of the SMIC and presents the in-orbit results of 12 SMICs used in Ten-Koh satellite, which was developed in less than 1.5 years. The in-orbit data received since the launch reveal that solar module withstands not only the launching environment of H-IIA rocket but also more than 1500 orbits in LEO. The modular approach allowed the design, implementation and qualification of only one module, followed by manufacturing and integration of 12 subsequent flight units. The approach with the solar module can be followed in other components of the EPS such as battery and power regulators. Full article
(This article belongs to the Special Issue Verification Approaches for Nano- and Micro-Satellites)
Figures

Graphical abstract

Open AccessArticle
Engineering Methodology for Student-Driven CubeSats
Received: 31 December 2018 / Revised: 25 March 2019 / Accepted: 25 March 2019 / Published: 13 May 2019
PDF Full-text (3273 KB) | HTML Full-text | XML Full-text
Abstract
CubeSats are widely used by universities and research institutions all over the world. Their popularity is generally attributed to the use of low-cost components, free student labor and simple design. They have been shown to encourage Science, Technology, Engineering and Math (STEM) students [...] Read more.
CubeSats are widely used by universities and research institutions all over the world. Their popularity is generally attributed to the use of low-cost components, free student labor and simple design. They have been shown to encourage Science, Technology, Engineering and Math (STEM) students to become involved in designing, implementing and testing a real functioning spacecraft system. Projects like this encourage students from different disciplines to team up to design and build CubeSats, providing interdisciplinary work experience. Participating students vary in their expertise in developing such systems. Some will work on the project for years while others are not willing to spend two or three consecutive semesters developing a CubeSat project. Despite their simplicity in design and low cost, CubeSats are considered great engineering systems for exploring space. Nevertheless, a large number of CubeSat projects fail due to having an unclear mission, ambiguous system requirements and a lack of documentation. Students need to have a clear vision of how to build a real CubeSat system that can be launched and that can function in space. Thus, this paper proposes engineering methodologies and tools to help students develop CubeSat systems. These tools can help students with planning, collecting, eliciting and documenting the requirements in a well-defined manner. This paper focuses on student-driven CubeSat projects designed by students and faculty members. Additionally, data is presented in this paper to identify the challenges and needs of CubeSat developers. Plans for future work are also discussed. Full article
(This article belongs to the Special Issue Verification Approaches for Nano- and Micro-Satellites)
Figures

Figure 1

Open AccessArticle
A Reliability Engineering Approach for Managing Risks in CubeSats
Aerospace 2018, 5(4), 121; https://doi.org/10.3390/aerospace5040121
Received: 13 September 2018 / Revised: 5 November 2018 / Accepted: 13 November 2018 / Published: 15 November 2018
Cited by 1 | PDF Full-text (2905 KB) | HTML Full-text | XML Full-text
Abstract
Besides large-scale space missions, the spread of CubeSats for a variety of applications is increasingly requiring the development of systematic approaches for risk management. Being these applications are based on components with low TRL (Technology Readiness Level) or with limited performance data, it [...] Read more.
Besides large-scale space missions, the spread of CubeSats for a variety of applications is increasingly requiring the development of systematic approaches for risk management. Being these applications are based on components with low TRL (Technology Readiness Level) or with limited performance data, it is required to define approaches which ensure a systematic perspective. This paper aims to present a reliability engineering approach based on FMECA (Failure Mode, Effects, and Criticality Analysis) to manage CubeSat reliability data and prioritize criticalities early in the design phase. The approach firstly proposes an alpha-numeric coding system to support the identification and labeling of failure modes for typical CubeSats’ items. Subsequently, each FMECA coefficient (i.e., Severity, Occurrence, Detectability) has been linked to the CubeSat’s structural properties, reducing subjectivity by means of techno-centric proxy indicators. The approach has been validated in the design phases of a 6-Units university CubeSat for the observation of M-Dwarf stars and binary systems. The performed analysis supported the design process and allowed to identify the major criticalities of the CubeSat design, as demonstrated in the extended case study included in the paper. The formalized method could be applied to design procedures for nano-satellites, as well as being expanded for research and development in a variety of space missions. Full article
(This article belongs to the Special Issue Verification Approaches for Nano- and Micro-Satellites)
Figures

Figure 1

Open AccessArticle
Experimental Validation of an Onboard Transient Luminous Events Observation System for VisionCube via Ground Simulation Environment
Aerospace 2018, 5(4), 100; https://doi.org/10.3390/aerospace5040100
Received: 8 August 2018 / Revised: 3 September 2018 / Accepted: 20 September 2018 / Published: 21 September 2018
Cited by 1 | PDF Full-text (2293 KB) | HTML Full-text | XML Full-text
Abstract
The VisionCube is a 2-unit CubeSat developed in house, of which the primary mission is detecting the occurrence of transient luminous events (TLEs) in the upper atmosphere and obtaining corresponding images from a low Earth orbit. An onboard TLE observation system of the [...] Read more.
The VisionCube is a 2-unit CubeSat developed in house, of which the primary mission is detecting the occurrence of transient luminous events (TLEs) in the upper atmosphere and obtaining corresponding images from a low Earth orbit. An onboard TLE observation system of the VisionCube CubeSat is designed and developed by incorporating a photon-sensitive multi-anode photon-multiplier tube (MaPMT) and an image sensor. Also, a distinctive TLE observation software which enables detection of the TLEs and capture of images in a timely manner is devised. By taking into account the limited resources of a small CubeSat in size and power, the onboard observation system is developed employing a system-on-chip device by which both hardware and software can be integrated seamlessly. The purpose of this study is to investigate the functionality of the hardware and the validity of the software algorithm to show that the onboard system will function properly with no human intervention during the operations in space. To this end, a ground simulation facility is constructed to emulate TLEs occurring in space using a set of ultraviolet light-emitting diodes (UV LEDs) inside a darkbox. Based on the analysis of the spectral and temporal properties of the TLEs, the randomly generated UV LED pulses are chosen for verification scenarios for the TLE observation system. The validation results show that the hardware and the software algorithm of the onboard observation systems can effectively detect the TLEs and obtain the images during the in-orbit operation. Full article
(This article belongs to the Special Issue Verification Approaches for Nano- and Micro-Satellites)
Figures

Figure 1

Open AccessArticle
Simulation and Experimental Evaluation of a Flexible Time Triggered Ethernet Architecture Applied in Satellite Nano/Micro Launchers
Received: 13 July 2018 / Revised: 4 August 2018 / Accepted: 7 August 2018 / Published: 9 August 2018
PDF Full-text (1125 KB) | HTML Full-text | XML Full-text
Abstract
The success of small satellites has lead to the study of new technologies for the realization of Nano and Micro Launch Vehicle (NMLV) in order to make competitive launch costs. The paper has the objective to define and experimentally investigate the performance of [...] Read more.
The success of small satellites has lead to the study of new technologies for the realization of Nano and Micro Launch Vehicle (NMLV) in order to make competitive launch costs. The paper has the objective to define and experimentally investigate the performance of a communication system for NMLV interconnecting the End Systems as On-Board Computer (OBC), telemetry apparatus, Navigation Unit...we propose a low cost Ethernet-based solution able to provide the devices with high interconnection bandwidth. To guarantee hard delays to the Guide, Navigation and Control applications we propose some architectural changes of the traditional Ethernet network with the introduction of a layer implemented in the End Systems and allow for the lack of any contention on the network links. We show how the proposed solution has comparable performance to the one of TTEthernet standard that is a very expensive solution. An experimental test-bed equipped with Ethernet switches and Hercules boards by Texas Instruments is also provided to prove the feasibility of the proposed solution. Full article
(This article belongs to the Special Issue Verification Approaches for Nano- and Micro-Satellites)
Figures

Figure 1

Aerospace EISSN 2226-4310 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top