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Abstract: The subject of this work is the implementation and experimental testing of a purely magnetic
attitude control strategy, which can provide stabilization after the deployment and pointing of the
spacecraft without any attitude information. In particular, the control produces the detumbling of the
satellite and leads it to a desired attitude with respect to the direction of the Earth magnetic field,
based on the only information provided by a three-axis magnetometer. The system is meant to be
used as a backup solution, in case of failure of the primary strategy and is designed considering the
constraints set on time of operations, power consumption, and peak electric current for a typical
CubeSat mission. The detumbling and pointing algorithms are implemented on the FPGA core of
a CubeSat on-board computer and tested by Hardware-in-the-loop simulations. The simulation
setup includes a Helmholtz cage, recreating the magnetic environment along the orbit, the on-board
computer, a MEMS three-axis magnetometer and Simulink software, on which the attitude dynamics
is propagated. Test on the real system can provide useful information to select the parameters
of the control, such as the gains, to estimate the limits of the system, the time of operations and
prevent failures.
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1. Introduction

The Attitude Determination and Control System (ADCS) plays a vital role in spacecraft mission
operations. It provides information regarding the spacecraft orientation (or attitude) in space and
produces the control action necessary to modify its attitude, according to some input or prescribed
control laws. The successful development of an ADCS starts from concept design and should include
numerical and experimental validation of the algorithms and hardware, to confirm its performance
and robustness in different operative scenarios.

During the last decades, the introduction of the CubeSat standard gathered the attention of
universities and small companies, because of the possibility to develop satellites and space missions
with a limited budget [1,2]. The ADCS implemented under such a budget constraint are typically
based on low-cost Components Off-The-Shelf (COTS), thus sensors and devices which are not tailored
for space applications and novel system architecture. For this reason, experimental testing should
represent an essential part of the development process.

It is known from statistical analysis that the majority of CubeSat mission end in failure right after
the deployment. According to [3] the impact of ADCS failure on the number of “dead on arrival”
CubeSats seems to be marginal, but a system-oriented interpretation of the results provides a clearer
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view on the issue. In fact, if ADCS failures may not affect the functionality of the other on-board
systems, they do not allow those systems to operate in the design conditions, jeopardizing the mission,
eventually causing its failure.

In the recent past, some strategies for low-cost Software-in-the-loop (SiL) or even
Hardware-in-the-loop (HiL) testing of ADCS have been proposed. In SiL testing, the space environment,
the satellite attitude dynamics, and the ADCS devices are all simulated, therefore the accuracy of the
result depends on that of the model used for each one of the mentioned elements of the loop [4–6]. SiL
simulations can be successfully applied to verify the ADCS system architecture and algorithms and are
less complex than HiL simulations, in which the real attitude sensors and actuators are used, allowing
a more accurate estimation of the ADCS performance. To adequately test the mentioned ADCS devices,
some crucial features of the space environment must be recreated on-ground by the HiL setup.

Some HiL setup include a Helmholtz cage [7–9], a device capable of reproducing the geomagnetic
field vector on the satellite during its orbital motion, allowing the use of real magnetometers in the
simulation loop. Spherical air-bearing testbeds are used to recreate the microgravity conditions [10–12],
necessary to simulate the spacecraft attitude dynamics under the control of attitude actuators [13–18].

In this work, we propose the design of a purely magnetic ADCS, allowing CubeSat detumbling
and pointing based on the only measurement data from a MEMS three-axis magnetometer. The system
is developed considering constraints on time of operations, power consumption, and peak electric
current set by common CubeSat on-board systems.

The ADCS algorithms are designed to be implemented on the FPGA core of the CubeSat
On-Board-Computer (OBC) ABACUS, designed by the School of Aerospace Engineering (SIA) and
successfully flight proven [19]. The algorithms and part of the ADCS hardware (OBC and magnetometer)
are tested by HiL simulations, using the Helmholtz cage available at SIA Flight Mechanics Laboratory
“Michele D. Sirinian”. The configuration of the facility and calibration of the magnetometer are also
part of this work and will be discussed in detail.

The manuscript is organized as follows, the background on spacecraft attitude dynamics and
magnetic control is provided in Section 2. In Section 3 the configuration and calibration of the test
hardware is presented, indicating the solutions selected and the performance of the experimental
setup. The results for some selected test cases are presented and commented in Section 4, producing a
preliminary characterization of the ADCS. Final comments are reported in the Conclusions section.

2. Spacecraft Attitude Dynamics and Magnetic Attitude Control

2.1. Attitude Dynamics

Attitude dynamics is modelled considering the spacecraft as a rigid body which is free to
rotate about its center of mass. The principal moments of inertia are used to define the body frame
Fb = [x̂b, ŷb, ẑb] which rotates rigidly with the spacecraft. An inertial reference frame Fi = [x̂i, ŷi, ẑi] is
identified as well, here selected as the GeoCentric Inertial frame (GCI) [20], so that the Euler angles
(ϕ,θ, ψ) transforming Fb into Fi can be used to describe the spacecraft attitude. Furthermore, the
angular velocity at which Fb rotates with respect to Fi represents the angular velocity of the spacecraft

ω = [ ωx ωy ωz ]
T

. The two reference frames are sketched in Figure 1.
Based on this representation, the dynamic equations of attitude motion are represented by the

following system [20]:
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
.
ϕ = ωx + sinϕ tanθωy + cosϕ tanθωz.

θ = cosϕωy − sinϕωz
.
ψ =

(sinϕωy−cosϕ ωz)
cosθ

.
ωx =

(
Jy−Jz

Jx

)
ωyωz + τc,x + τd,x

.
ωy =

(
Jz−Jx

Jy

)
ωxωz + τc,y + τd,y

.
ωz =

(
Jx−Jy

Jz

)
ωxωy + τc,z + τd,z

(1)

where τc,i and τd,i are, respectively, the components of the control and disturbance torques acting on
the satellite, described in detail in the following subsections.Aerospace 2019, 6, x FOR PEER REVIEW 3 of 17 
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Figure 1. Sketches of the GeoCentric Inertial frame (GCI) and body-fixed reference frames.

2.2. Magnetic Attitude Control

In the ADCS developed here, the control torque is produced by the interaction between the
geomagnetic field surrounding the spacecraft (Bb), measured by the three-axis magnetometer, and the
magnetic dipole moment m = [ mx my mz ] generated by the magnetic coils (or magnetorquers)
installed on-board, representing the attitude control devices. The torque can be expressed by the
following equation

τc = m × Bb (2)

In particular, the system consists of three mutually orthogonal magnetorquers, each one generating
a magnetic dipole moment mi along one of the directions of Fb (see Figure 2)

mi = NiAiIi i = x, y, z (3)

where Ni and Ai are, respectively, the number of turns and the mean area of the coil along orthogonal
to the i-th body-frame direction, and Ii is the electric current in the wire of the coil.
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The magnetorquers are controlled by regulating the intensity of I, which can be determined based
on that of the magnetic dipole moment necessary to produce the desired attitude motion. Two control
laws were implemented, one producing the spacecraft detumbling, or stabilization after deployment,
and one setting the spacecraft attitude to some prescribed angle with respect the geomagnetic field
vector, hereafter referred to as B-pointing.

Detumbling control has long been studied and is simply described by the following equation for
the magnetic dipole moment [21]:

md = −Kd
.

Bb (4)

where Kd is the control gain and
.

Bb is the time derivative of the geomagnetic field measured by the
on-board magnetometer. Indicating with fk the sampling frequency of the ADCS and with k the sample,
the value of the derivative can be calculated as follows:

.
Bb = fk

(
B(k)

b −B(k−1)
b

)
(5)

B-pointing control represents an adaptation of the nadir-pointing control already implemented on
TigriSat, a 3U CubeSat launched by the SIA in 2014 [22]:

mp = KpBb ×
(
r̂× B̂b

)
(6)

where Kp is the control gain, r̂ is the unit vector representing the target attitude of the spacecraft and B̂b
is the direction of Bb. For a general case, r̂ should be provided by the attitude determination segment of
the ADCS, which is not examined here. In fact, the aim of the proposed solution is that of representing
an effective and reliable alternative to be activated when attitude determination is not available. In
such a scenario, r̂ will be set equal to a prescribed direction in Fb. The following two cases are examined
in Section 4:

(a) r̂ = [1 0 0], producing x̂b in the direction of Bb;

(b) r̂ = [0.5
√

2 0.5
√

2 0], setting ŷb and ẑb to an angle of 45 deg with respect to Bb.

Since a three-axis magnetometer can only resolve two out of three attitude angles, the B-pointing
algorithm can control the spacecraft attitude along one (a) or two (b) directions at most. Considering
for instance the case (b), the only attitude information available on third axis (x̂b) is that it will always
lay on a plane orthogonal to Bb. This result can be easily extended to case (a). It is worth to highlight
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that similar configurations produce a predictable attitude motion of the satellite which, in case of
failure of the primary attitude determination devices, improving the survivability of the mission and
allowing to implement magnetometer-only attitude estimation strategies [23–31].

Equations (4) and (6) represent the control laws of the ADCS, producing the total magnetic dipole
moment given below:

m = md + mp (7)

Based on Equations (4), (6), and (7), the value of the electric current in the magnetorquers can be
determined once fixed the parameters N = 400 and A = 9.03 × 10−3 m2 for all the coils, which have
been selected in order to limit the power usage to Pmax = 250 mW at a supply voltage of Vdrive = 3 V.
It follows that the limit value for the current is Imax = 83 mA, therefore the maximum value for the
dipole moment which can be generated by each magnetorquer can be calculated from Equation (3) and
is equal to mmax

i = 0.3 Am2.

2.3. Disturbance Torques

During the orbital motion of the satellite, a variety of external torque, beside the control one, act
on it, producing a perturbation on the controlled attitude motion. The most relevant ones have been
considered, caused by residual dipole moment (τm), gravity gradient

(
τg

)
, and atmospheric drag (τa).

The total disturbance torque is calculated as follows

τd = τm + τg + τa (8)

2.3.1. Residual Dipole Moment Torque

The presence of magnetic materials or the electric currents in on-board electric devices can
produce a residual magnetic dipole moment mm on the satellite [32,33]. The interaction of mm with the
geomagnetic field Bb produces a torque on the satellite, which can be evaluated by Equation (2)

τm = mm ×Bb (9)

The magnitude and direction of mm depend on the final configuration of the satellite, therefore
they cannot be determined a-priori and a guessed value should be considered as long as the final
configuration of the satellite is not defined, to verify the effectiveness of the control algorithms also
in presence of such a perturbation. For the HiL simulations performed in Section 4, the magnitude
|mm| = 0.1 Am2 is selected, which is one order of magnitude higher than the values measured for
similar CubeSat configurations [33,34], definitely representing a worst-case scenario.

2.3.2. Gravity Gradient Torque

Satellite with an unsymmetrical mass distribution are subject to gravitational torque, produced by
the Earth’s gravitational field. The torque can be modelled as follows [20]:

τg = 3
µ

|r|3
r̂× [J]r̂ (10)

where r is the position vector of the satellite in GCI coordinates, µ= 3.986× 1014 m3/s2 is the gravitational
parameter of the Earth, [J] is the tensor of inertia of the satellite and r̂ = r/|r|. The value of |r| can be
calculated from the polar equation for a Keplerian orbit:

|r| =
a
(
1− e2

)
1 + e cosϑ

(11)
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where a and e indicate the semimajor axis and the eccentricity of the orbit and ϑ is the true anomaly.
The components of r in the GCI frame can be calculated applying the following rotation matrix,
transforming a vector in the orbital plane to the GCI one [20]:

[Ro,i] =


cos Ω cos(ω+ ϑ) − sinΩ cos i sin(ω+ ϑ) − cos Ω sin(ω+ ϑ) − sinΩ cos i cos(ω+ ϑ) sin Ω sin i
sin Ω cos(ω+ ϑ) + cos Ω cos i sin(ω+ ϑ) cos Ω cos i cos(ω+ ϑ) − sinΩ sin(ω+ ϑ) − cos Ω sin i

sin i sin(ω+ ϑ) cos(ω+ ϑ) sin i cos i

 (12)

where Ω is the RAAN,ω is the argument of perigee and i is the inclination of the orbital plane. Based
on matrix (12), r is defined by the transformation below:

r = [Ro,i]


|r|
0
0

 (13)

2.3.3. Aerodynamic Torque

Aerodynamic torque arises from the aerodynamic drag produced by the interaction of the
satellite surfaces with the residual atmosphere at high altitude, which is represented by the following
equation [35]:

D =
1
2
ρSCDV2 V̂ (14)

where ρ is the density of air, which can be modelled according to NRLMSISE-00 empirical model [36],
S is the normal projection of the satellite area to the incident flow, CD is the drag coefficient of the
satellite [37], and V is its orbital speed which can be determined as follows:

V =

√
µ
( 2
|r|
−

1
a

)
(15)

To calculate the aerodynamic torque, the unit vector V̂ must be expressed in Fb, by applying the
following coordinate transformation [20]:

V̂ = [Ri,b][Ro,i]


0
1
0

 (16)

where the rotation matrix [Ri,b] transforms Fi to Fb and is given below:

[Ro,i] =


cosψ cosθ cosφ sinψ+ cosψ sinφ sinθ sinφ sin psi − cosψ cosφ sinθ
− cosθ sinψ cosφ cosψ− sinψ sinφ sinθ cosψ sinφ+ cosφ sinψ sinθ

sinθ − cosθ sinφ cosφcosθ

 (17)

The expression for the aerodynamic torque in Fb is reported below [35]:

τa = l×D (18)

where l is the arm of the torque, corresponding to the distance between the satellite center of mass
and the aerodynamic center, which is the point where the aerodynamic force is applied. Estimating
the aerodynamic center of the satellite requires dedicated analyses which are beyond the aim of this
work [35], therefore for the HiL simulation a worst case was considered, setting l equal to the half-length
of each side of the satellite.
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3. Configuration of the Hardware-In-The-Loop Simulation Hardware

A primary goal of this work is to verify the performance of the ADCS in producing the control laws
proposed in Section 2. To achieve this result, the experimental setup for HiL simulations is configured.

3.1. Helmholtz Cage Configuration

A 3 × 3 × 3 m3 Helmholtz cage is used to reproduce the geomagnetic field vector in Fi at any
orbital position of the spacecraft. The complete cage system is shown in Figures 3 and 4. The magnetic
field generated by the Helmholtz cage is uniform in a volume of 30 × 30 × 30 cm3 at the center of
the cage. Each pair of coils produces a constant magnetic field orthogonal to their surface, whose
magnitude can be estimated by the following approximated relation:

Bi =
2µ0NIi

πl
2

(1 + β2)
√

2 + β2
i = x, y, z (19)

where µ0 is the permeability of free space, N = 54 and l = 1.24 m are, respectively, the number of turns
and the half length of the side of the coils, β = 0.5445 is the ratio of the distance between the two coils
and I is the electric current in the coils. The facility was designed to operate in the range ±2 × 10−4 T
along each direction.
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In addition to the Helmholtz cage, the system includes:

• 3 power supplies, each one feeding one pair of coils, allowing the generation of a magnetic field
vector with desired intensity and direction;

• a control computer, on which the orbital motion of the satellite is simulated, based on the input
orbital parameters, and the corresponding value of Bi for each position of the satellite is calculated
in real-time, using the International Geomagnetic Reference Field (IGRF) model [38];

• a calibrated three-axis magnetometer, measuring the magnetic field in the central and constant
region of the Helmholtz cage.

All the mentioned elements form a closed-loop system which operates according to a control
code implemented in Matlab. A Proportional Integral Derivative (PID) controller allows generating a
magnetic field with an error in the range ±1 × 10−7 T.

The list of the operations necessary to simulate the changing magnetic field during the orbital
motion of the satellite is discussed hereafter. As a preliminary step, the desired orbital parameters
are introduced in the control code, written in Matlab, along with the total time and the time step for
the simulation. In particular, the time step can be selected in the frequency range 1–10 Hz, therefore
allowing accelerated simulations up to a factor 10. It is worth noting that, to allow accelerated
simulations, the sampling frequency of the ADCS must be compatible with that of the Helmholtz cage,
as discussed in detail in Section 3.2. Corresponding to each time step, the following cycle is repeated:

1. the orbital propagator updates the true anomaly and calculates the position r of the satellite in Fi,
according to Equations (11)–(13);

2. using a Matlab routine, the longitude (Lo), latitude (La), and altitude (h) of the satellite at any r are
calculated and the geomagnetic field Bi is computed from the IGRF model:

Bi,x = 1
|r|
∂VB
∂La

Bi,x = 1
|r|
∂VB
∂La

Bi,x = 1
|r|
∂VB
∂La

(20)
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where VB is the geomagnetic field scalar potential, reported below, whose parameters are defined
in [38]:

VB = RE

N∑
n=1

n∑
m=0

(RE

|r|

)n+1
[gm

n (t) cos(mLo) + hm
n (t) sin(mLo)]Pm

n cos La (21)

3. the value of the current to be provided to each pair of coils of the Helmholtz cage is calculated
based on Equation (19);

4. the power supplies are activated from Matlab script, changing the magnetic field inside the cage,
which is measured by the facility magnetometer Bm;

5. the reading from the magnetometer is sent to the control computer and the error between the
desired and the measured value of the magnetic field is calculated, ε = Bm −Bi;

6. based on ε, a PID controller implemented in the code estimates the currents Ic_i to compensate
the error;

7. the loop repeats until the end of the simulation.

3.2. On-Board Magnetometer Configuration and Calibration

The ABACUS OBC is equipped with a Honeywell HMR2300 three-axis magnetometer, operating
in the range ±1 × 10−4 T, with 12-bit measurement accuracy down to 1 × 10−7 T and sampling frequency
selectable between 10 and 154 Hz [19]. The three-axis magnetometer is a MEMS sensor, and can
be therefore affected by some structural defects, related to the production technology, introducing
non-isotropic measurement errors.

The goal of the calibration process is to characterize the magnetic sensors, so the satellite can
process accurate values for the magnetic field strength and direction, under different modes of operation.
Calibration is achieved by subjecting the three-axis magnetometer to a known magnetic field Bref,
generated by means of the Helmholtz cage, calculating the measurement error and compensating it by
least square fitting method.

The calibration starts calculating the offset Bo between the reference magnetic field Bref and the
value read by the magnetometer Bm. Several measurements are repeated rotating the magnetometer
about its center of mass. The offset values are stored and processed by ellipsoid fitting and linear
least-squares method, which convert them into an ellipsoid representing the distribution in space of
the offset. The semi-axes of the ellipsoid, indicated as Rx, Ry, and Rz, can then be collected in the matrix
[T], defined as follows:

[T] =


Rx 0 0
0 Ry 0
0 0 Rz


After determining the 3 × 1 eigenvector v of [T], the compensated value Bc can be calculated as follows:

Bc = v[T]BrefvTBo (22)

At the end of the calibration, the semi-axes calculated by the ellipsoid fitting method should
be equal one the other. An example is reported in Figure 5, showing the comparison between the
measurements before (red) and after (blue) the calibration of the OBC magnetometer.
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the calibration.

3.3. Hardware-In-The-Loop Platform Configuration

The HiL platform is configured as follows and represented in the block diagram in Figure 6:

• Helmholtz cage system, generating Bi based on the estimates of the orbital propagator running on
the facility control computer;

• on-board three-axis magnetometer (integrated to the OBC), measuring the magnetic field generated
by the Helmholtz cage;

• OBC, on which the control algorithms are implemented, producing the driving current to the
magnetorquer and the magnetic control torque;

• control computer, propagating the orbital motion to calculate Bi, calculating the disturbance
torques, and integrating the attitude dynamics equations to determine the Euler angles and
angular rates.
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Attitude dynamics is simulated using Simulink fixed step ode8 integrator. The integration time
for the software is synchronized with that of the HiL simulations, which was selected to be 10 times
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faster than real time. This corresponds to an operating frequency of 10 Hz for the Helmholtz cage,
therefore, to avoid loss of information, the sampling frequency of the OBC magnetometer is set to
100 Hz.

It is worth noting that, since the attitude motion of the spacecraft is just simulated, the
magnetometer will not read values of the geomagnetic field in Fb, but in Fi instead. Therefore,
the coordinate transformation from Bi to Bb is performed in Simulink, after calculating the Euler
angles (ϕ,θ,ψ) from the integration of system (1) and based on the input (Bi) from the OBC three-axis
magnetometer. The measured value of Bb is then processed by the OBC to calculate the magnetic
dipole moment required to perform the detumbling and/or B-pointing control, according to Equations
(4) and (6). Once determined m, the value of the current is calculated from the inverse of Equation
(3) and sent to the power board, which feeds the magnetorquers. To avoid that the magnetic field
generated by the magnetorquer interferes with the measurements of the magnetometer, a duty cycle is
defined, such that the magnetorquers are activated only for the 90% of the cycle and the remaining 10%
is dedicated to the measurements by the magnetometer. Once again, because of the simulated attitude
dynamics, the values of the currents are converted to the torque components into the Simulink model,
as they are needed to integrate system (1).

4. Hardware-In-The-Loop Simulations

The detumbling and B-pointing algorithms were tested through HiL simulations, considering
the orbital and design parameters for TigriSat, a 3U CubeSat designed and launched by SIA in 2014
and equipped with ABACUS. The characteristic parameters of the disturbance torque were selected to
represent realistic worst cases and are indicated, together with the previous ones, in Table 1.

Table 1. Orbital parameters and satellite inertial properties for HiL simulations.

Orbital Parameters Aerodynamic Properties

h [km] 600 CD 2.2
i [deg] 97.79 lx [m] 1 × 10−1

e 0 ly [m] 3.3 × 10−1

Ω [deg] 45 lz [m] 3.3 × 10−1

Inertial Properties Residual Dipole Moment

m [kg] 4 |mm| [Am2] 0.1
Jx [kgm2] 6.5 × 10−3 mm,x [Am2] 9.13 × 10−2

Jy [kgm2] 4.09 × 10−2 mm,y [Am2] 6.32 × 10−2

Jz [kgm2] 4.09 × 10−2 mm,z [Am2] 9.80 × 10−3

Geometric Properties Magnetorquers Properties

Ax [m2] 1 × 10−2 N 400
Ay [m2] 3.3 × 10−2 A [m2] 9.03 × 10−3

Az [m2] 3.3 × 10−2 Imax [A] 8.3 × 10−3

The results of three Test Cases (TC) are presented and discussed. In TC1 the detumbling control
is verified setting to zero the gain for the pointing control, and assuming the initial angular rates
at the deployment reported in Table 2. The detumbling is simulated for a total time corresponding
to 1.5 orbital periods and the satellite state (position, velocities and angular rates) at the end of the
detumbling phase is assumed as the initial condition for TC2 and TC3, in which pointing control is
tested for two different values of the target attitude. The simulation parameters are collected in Table 2.
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Table 2. Simulation parameters for the three Test Cases (TC).

Parameter TC1 TC2 TC3

ϕ, θ, ψ [deg] 0, 0, 0 175.3, −1.4, 51.7 175.3, −1.4, 51.7
ω [deg/sec] [5 3 −3] [8.5 4.1 4.2]/100 [8.5 4.1 4.2]/100

Kd 1000 300 500
Kp 0 25 30
r̂ − [1 0 0] [0 0.5

√
2 0.5

√
2]

The time behavior of the angular rates is reported in Figure 7, showing the effectiveness of the
control law (4) in producing the desired decrease of the angular rates along all the three directions.
The mean value of the angular rates in the last 300 s (5%) of the detumbling phase is equal to
ω = [ 0.085 0.041 0.042 ] deg/ sec .Aerospace 2019, 6, x FOR PEER REVIEW 12 of 17 
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Figure 7. Angular rates for the Test Case 1.

Figures 8 and 9 show the behavior in time of the Euler angles for TC2 and TC3. The HiL simulations
are performed for a total of 6.5 orbital periods, considering for the initial conditions the final state
corresponding to TC1. It can be noticed that for both the test cases, the Euler angles settle about the
target value (see r̂ in Table 2). The minimum, maximum, and mean error corresponding over the last
orbital period are reported in Table 3. It is worth noting that the minimum error here represents the
negative error with maximum absolute value.

Aerospace 2019, 6, x FOR PEER REVIEW 12 of 17 

 

Figure 7. Angular rates for the Test Case 1. 

Figures 8 and 9 show the behavior in time of the Euler angles for TC2 and TC3. The HiL 
simulations are performed for a total of 6.5 orbital periods, considering for the initial conditions the 
final state corresponding to TC1. It can be noticed that for both the test cases, the Euler angles settle 
about the target value (see 𝑟̂ in Table 2). The minimum, maximum, and mean error corresponding 
over the last orbital period are reported in Table 3. It is worth noting that the minimum error here 
represents the negative error with maximum absolute value. 

Table 3. Pointing error Test Cases (TC). 

Error TC2 TC3  Δ𝜑௠௜௡ [deg]  0.02 −3.25  Δ𝜑௠௔௫ [deg]  16.67 0.15  Δ𝜑௠௘௔௡ [deg]  4.76 −1.95  Δ𝜃௠௜௡ [deg]  −13.26 −7.68  Δ𝜃௠௔௫ [deg]  8.92 8.07  Δ𝜃௠௘௔௡ [deg]  −2.03 0.02  Δ𝜓௠௜௡ [deg]  −15.73 −8.06  Δ𝜓௠௔௫ [deg]  7.28 7.68  Δ𝜓௠௘௔௡ [deg]  −2.29 0.01 

 
Figure 8. Euler angles for the Test Case 2, 𝑟̂ = [1 0 0]. Figure 8. Euler angles for the Test Case 2, r̂ = [1 0 0].



Aerospace 2019, 6, 133 13 of 17Aerospace 2019, 6, x FOR PEER REVIEW 13 of 17 

 

.  

Figure 9. Euler angles for the Test Case 3, 𝑟̂ = ൣ0 0.5√2 0.5√2൧. 
The values reported in Table 3 indicate that, despite the presence of perturbation torque, 

pointing control (6) is effective within an accuracy of, approximately ±10 deg on average and ±20 deg 
considering the maximum values. In particular, TC2 seems to be more challenging than TC3. In fact, 
for 𝑟̂ = [1 0 0] the system will drive the satellite if the magnetic field measured along 𝑦ො௕ and 𝑧̂௕ is 
not null, or equivalently if the component measured along 𝑥ො௕  is equal to the magnitude of the 
magnetic field. Clearly, any component measured at time t can never exceed the magnitude of the 
magnetic field  |𝑩𝒃(𝒕)|, then the control shows aperiodic behavior, limiting its accuracy. Differently, 
when the magnitude of the magnetic field is “shared” by two or more components, such as 𝑟̂ =ൣ0 0.5√2 0.5√2൧, then the component measured along the directions 𝑦ො௕  and 𝑧̂௕  can, at different 
times, exceed the target value 0.5√2 |𝑩𝒃(𝒕)| and the behavior of the control is oscillatory about the 
target value. This can be proved by observing that the maximum and minimum error for TC3 are 
(almost) equally distributed about the mean value. This is not the case for TC2, in which the 
maximum value is much larger in magnitude than the minimum one. 

It is worth noting that the maximum error on the Euler angles is measured when the satellite 
crosses the poles. In this region the direction of the geomagnetic field vector changes suddenly and 
in particular Bi points towards the North magnetic pole when the latitude is slightly lower than 90 
deg and outwards from the pole when the latitude is higher than 90 deg (similarly in the 
neighborhood of the South pole). According to Equation (6), a marked variation of the direction of Bi 
produces a high torque onto the satellite, increasing its angular rates, therefore longer time is required 
to damp the angular oscillations and reduce their amplitude about the target attitude.  

Figures 10 and 11 show the angular rates for TC2 and TC3. It can be noticed that when the 
pointing phase starts, the angular rates increase, with higher intensity on the axes which are 
controlled to the target attitude (i.e., 𝑥ො௕ for TC2 and 𝑦ො௕ and 𝑧̂௕ for TC3). This is a consequence of 
the control torque arising from mp. 

Figure 9. Euler angles for the Test Case 3, r̂ = [0 0.5
√

2 0.5
√

2].

Table 3. Pointing error Test Cases (TC).

Error TC2 TC3

∆ϕmin [deg] 0.02 −3.25
∆ϕmax [deg] 16.67 0.15
∆ϕmean [deg] 4.76 −1.95

∆θmin [deg] −13.26 −7.68
∆θmax [deg] 8.92 8.07
∆θmean [deg] −2.03 0.02

∆ψmin [deg] −15.73 −8.06
∆ψmax [deg] 7.28 7.68
∆ψmean [deg] −2.29 0.01

The values reported in Table 3 indicate that, despite the presence of perturbation torque, pointing
control (6) is effective within an accuracy of, approximately±10 deg on average and±20 deg considering
the maximum values. In particular, TC2 seems to be more challenging than TC3. In fact, for r̂ = [1 0 0]
the system will drive the satellite if the magnetic field measured along ŷb and ẑb is not null, or
equivalently if the component measured along x̂b is equal to the magnitude of the magnetic field.
Clearly, any component measured at time t can never exceed the magnitude of the magnetic field∣∣∣Bb(t)

∣∣∣, then the control shows aperiodic behavior, limiting its accuracy. Differently, when the
magnitude of the magnetic field is “shared” by two or more components, such as r̂ = [0 0.5

√
2 0.5

√
2],

then the component measured along the directions ŷb and ẑb can, at different times, exceed the target
value 0.5

√
2
∣∣∣Bb(t)

∣∣∣ and the behavior of the control is oscillatory about the target value. This can be
proved by observing that the maximum and minimum error for TC3 are (almost) equally distributed
about the mean value. This is not the case for TC2, in which the maximum value is much larger in
magnitude than the minimum one.

It is worth noting that the maximum error on the Euler angles is measured when the satellite
crosses the poles. In this region the direction of the geomagnetic field vector changes suddenly and in
particular Bi points towards the North magnetic pole when the latitude is slightly lower than 90 deg
and outwards from the pole when the latitude is higher than 90 deg (similarly in the neighborhood of
the South pole). According to Equation (6), a marked variation of the direction of Bi produces a high
torque onto the satellite, increasing its angular rates, therefore longer time is required to damp the
angular oscillations and reduce their amplitude about the target attitude.

Figures 10 and 11 show the angular rates for TC2 and TC3. It can be noticed that when the
pointing phase starts, the angular rates increase, with higher intensity on the axes which are controlled
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to the target attitude (i.e., x̂b for TC2 and ŷb and ẑb for TC3). This is a consequence of the control torque
arising from mp.
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5. Discussion

In this section, some relevant features of the attitude control system, inferred from the HiL
simulations, are briefly outlined:

• the system can produce effective detumbling and stabilization during the pointing phase;
• the pointing accuracy of the system, though coarse, is acceptable for a backup mode of operations,

and considering the lack of attitude information or sophisticate filtering methods (i.e., Extended
Kalman Filter);

• the achievement of some target attitude r̂ can be more challenging, or equivalently less accurate,
this is in particular the case for r̂ = [1 0 0];

• the system is robust with respect to the noise of the calibrated magnetometer (±1 × 10−6 T) and
the perturbation induced by residual dipole moment, gravity gradient and aerodynamic torques.

6. Conclusions

The implementation of a control strategy based on the only measurements data from a MEMS
three-axis magnetometer was presented. The strategy allows detumbling and pointing with respect
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to the geomagnetic field vector, it is tailored for CubeSat applications, requires limited power and is
meant to be used as a backup solution, in case of failure of the attitude determination device.

Hardware-in-the-loop simulations are performed to validate the strategy and its implementation
on a real CubeSat OBC and a flight proven three-axis magnetometer. The satellite attitude dynamics
is simulated, including the perturbation effects of the residual dipole moment, gravity gradient, and
aerodynamic torques.

Experimental testing showed that the three-axis detumbling allows reducing the angular rates
below 0.1 deg/sec, while the pointing strategy allows achieving the target attitude with an error below
20 deg. In particular, the pointing error increases significantly in the proximity of the magnetic poles,
due to the rapid change in the direction of the geomagnetic field vector. This result indicates that the
design of a pointing control mitigating this effect would be worth the implementation, and this will be
a field of research for the near future.

Further applications of the Hardware-in-the-loop setup are envisioned for the development
of the ADCS system designed for the 3U Astro Bio CubeSat (ABCS) and the 6P PocketQube Space
Travelling Egg Controlled Catadioptric Object (STECCO) currently developed at the School of Aerospace
Engineering. These will include the implementation of a spherical air bearing to simulate microgravity
attitude motion of the satellite and testing of magnetometer-only attitude control algorithms.
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