Special Issue "Fault Detection and Prognostics in Aerospace Engineering"

A special issue of Aerospace (ISSN 2226-4310).

Deadline for manuscript submissions: 31 March 2021.

Special Issue Editors

Dr. Matteo Davide Lorenzo Dalla Vedova
Website
Guest Editor
Department of Aerospace and Mechanical Engineering (DIMEAS), Politecnico di Torino, 10129 Turin, Italy
Interests: aerospace actuators; applied mechanics; modeling and simulation; diagnostics; engineering; flap/slat actuation systems; FBG sensors; flight control systems; hydraulics; Matlab Simulink; mechatronics; on-board systems; prognostics; systems engineering
Dr. Pier Carlo Berri
Website
Guest Editor
Department of Aerospace and Mechanical Engineering (DIMEAS), Politecnico di Torino, 10129 Turin, Italy
Interests: aerospace systems; diagnostic; electro-mechanical actuation systems; FBG-based sensors; minimally intrusive sensors for aerospace applications; model-based approach diagnostics; prognostics and diagnostics of aerospace systems

Special Issue Information

Dear Colleagues,

The present Special Issue entitled “Fault Detection and Prognostics in Aerospace Engineering” focuses on topics related to prognostics, diagnostics, and innovative approaches to fault detection/identification in all sectors of aerospace engineering.

Effective and reliable diagnostic strategies, able to identify the incoming failures and neutralize or, at least, mitigate their effects in a timely manner, are essential in aerospace to guarantee a proper fulfilment of safety requirements. These methods are evolving in parallel with the increase in complexity and criticality of on-board systems and, especially in the last few decades, have become a fundamental topic that defines the goodness of aerospace projects.

In this regard, in recent years, a new engineering discipline called prognostics and health management (PHM) has been developed as an innovative strategy to reduce risks associated with the propagation of progressive failures. PHM relies on the continuous monitoring of functional parameters of the system to detect and identify the precursors of failures at an early stage, to estimate the remaining useful life (RUL) of the components. This information about the system health condition can be leveraged in maintenance planning. As a result, most of the necessary maintenance interventions can be scheduled ahead instead of being performed as corrective maintenance. The operation profile of the aircraft can be adaptively modified to reduce ground time, resulting in higher availability and lower operating costs. The adoption of a reliable prognostic strategy supporting the aircraft maintenance activity would lead to a more straightforward troubleshooting task, reducing the total ground time of the vehicle and mitigating the risks associated with the human factor in fault identification.

These topics are now in the spotlight of the scientific community and arouse a growing interest in several industrial sectors (e.g., aerospace, automotive, automation, and more). Therefore, we believe that a collection of selected works providing an overview of the state of the art and highlighting the most recent and promising studies could be received with interest by the technical–scientific community.

To provide a thematic focus between the different application areas, this Special Issue aims to collect original research on innovative methods to address system engineering problems such as:

  • Aerospace actuators
  • Aircraft flight control system
  • Complex aerospace systems
  • Diagnostics
  • Dynamic simulation of the on-board system
  • Fault detection/evaluation methods
  • Mechatronics
  • Model-based approach diagnostics
  • Modeling techniques
  • Monitoring systems
  • Multidomain numerical models
  • Nonlinearities
  • Numerical simulation
  • Onboard systems
  • PHM
  • Prognostics
  • Progressive failures
  • Safety
  • Simplified numerical models
  • Systems design/optimization
  • Systems engineering

Furthermore, the key topics listed above are not intended to exclude articles from additional areas. Likewise, we do not want to limit the Special Issue’s focus to diagnostic and prognostic problems only, but we also aim to include significant studies concerning the analysis of the main failure modes affecting aerospace systems, their impact on the systems operation, and the innovative techniques to simulate their effects.

We look forward to receiving your submissions and kindly invite you to contact one of the Guest Editors for further questions.

Dr. Matteo Davide Lorenzo DALLA VEDOVA
Dr. Pier Carlo BERRI
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Aerospace is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1000 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Open AccessArticle
Detection and Prognosis of Propagating Faults in Flight Control Actuators for Helicopters
Aerospace 2020, 7(3), 20; https://doi.org/10.3390/aerospace7030020 - 26 Feb 2020
Cited by 1
Abstract
Recent trend in the aeronautic industry is to introduce a novel prognostic solution for critical systems in the attempt to increase vehicle availability, reduce costs, and optimize the maintenance policy. Despite this, there is a general lack of literature about prognostics for hydraulic [...] Read more.
Recent trend in the aeronautic industry is to introduce a novel prognostic solution for critical systems in the attempt to increase vehicle availability, reduce costs, and optimize the maintenance policy. Despite this, there is a general lack of literature about prognostics for hydraulic flight control systems, especially looking at helicopter applications. The present research was focused on a preliminary study for an integrated framework of fault detection and failure prognosis tailored for one of the most common architectures for flight control actuation. Starting from a high-fidelity dynamic model of the system, two different faults were studied and described within a dedicated simulation environment: the opening of a crack in the coils of the centering springs of the actuator and the wear of the inner seals. Both failure modes were analyzed through established models available in the literature and their evolution simulated within the model of the actuator. Hence, an in-depth feature selection process was pursued aimed at the definition of signals suitable for both diagnosis and prognosis. Results were then reported through an accuracy-sensitivity plane and used to define a prognostic routine based on particle filtering techniques. The more significant contribution of the present research was that no additional sensors are needed so that the prognostic system can be potentially implemented for in-service platforms. Full article
(This article belongs to the Special Issue Fault Detection and Prognostics in Aerospace Engineering)
Show Figures

Figure 1

Back to TopTop