Detection and Prognosis of Propagating Faults in Flight Control Actuators for Helicopters
Abstract
:1. Introduction
2. System Configuration and Physical Model
2.1. System Configuration
2.2. Physical Model
2.2.1. Spring Cracking
2.2.2. Seals Wear
3. Scenario Definition and Simulation
3.1. On-Ground Tests
3.2. In-Flight Conditions
4. Feature Selection
5. PHM Algorithm
5.1. Fault Detection
5.2. Failure Prognosis
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
CRA | Cumulative relative accuracy |
FFT | Fast Fourier Transform |
LVDT | Linear Variable Differential Transformer |
PHM | Prognostics and health management |
Probability density function | |
RA | Relative accuracy |
RMS | Root Mean Square |
RUL | Remaining useful life |
SCAS | Stability and command augmentation system |
Symbols
a | Depth of crack, m |
A | Area, m2 |
C | Spring index R/r, dimensionless |
D | Diameter of the spring coil, m |
F | Axial force action on the spring, N |
FT(η) | Geometrical factor, dimensionless |
G | Shear modulus, Pa |
i | Current, A |
J | Polar second moment of area, m4 |
K | Spring stiffness, N/m |
Ki1 | First leakage parameter, m3/s/Pa |
Ki2 | Second leakage parameter, m3/s/ |
KIII | Stress intensity factor, Pa |
La | Friction work, J |
N | Number of spring turns, dimensionless |
Ql | Volumetric flow rate, m3/s |
R | Radius of the spring coil, m |
r | Radius of the spring wire, m |
x | Displacement, m |
β | Experimental material parameter, N/m |
γ | Shear strain, dimensionless |
Δp | Differential pressure, Pa |
δ | Spring displacement, m |
ε | Opening angle of the crack, rad |
η | Dimensionless crack depth a/(2r) |
λ | Thickness of removed material, m |
τ | Shear stress, Pa |
References
- Keller, J.; Carr, D.; Love, F.; Grabill, P.; Ngo, H.; Shanthakumaran, P. AH-64D Main Transmission Accessory Drive Spur Gear Installation Fault Detections. J. Intell. Manuf. 2012, 23, 205–211. [Google Scholar] [CrossRef]
- Blunt, D.M.; Keller, J.A. Detection of a fatigue crack in a UH-60A planet gear carrier using vibration analysis. Mech. Syst. Sig. Process. 2006, 20, 2095–2111. [Google Scholar] [CrossRef]
- Pawar, P.M.; Ganguli, R. Helicopter rotor health monitoring-A review. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 2007, 221, 631–647. [Google Scholar] [CrossRef]
- Brown, D.; Georgoulas, G.; Bole, B.; Pei, H.L.; Orchard, M.; Tang, L.; Saha, B.; Saxena, A.; Goebel, K.; Vachtsevanos, G. Prognostics Enhanced Reconfigurable Control of Electro-Mechanical Actuators. In Proceedings of the Annual Conference of the Prognostics and Health Management Society PHM09, San Diego, CA, USA, 27 September–1 October 2009. [Google Scholar]
- Dalla Vedova, M.D.L.; Germanà, A.; Berri, P.C.; Maggiore, P. Model-Based Fault Detection and Identification for Prognostics of Electromechanical Actuators Using Genetic Algorithms. Aerospace 2019, 6, 94. [Google Scholar] [CrossRef] [Green Version]
- Byington, C.S.; Watson, M.; Edwards, D. Data-Driven Neural Network Methodology to Remaining Life Predictions for Aircraft Actuator Components. In Proceedings of the 2004 IEEE Aerospace Conference, Big Sky, MT, USA, 6–13 March 2004. [Google Scholar]
- Autin, S.; Socheleau, J.; Dellacasa, A.; De Martin, A.; Jacazio, G.; Vachtsevanos, G. Feasibility Study of a PHM System for Electro-Hydraulic Servo- Actuators for Primary Flight Controls. In Proceedings of the Annual Conference of the Prognostic and Health Management Society, Philadelphia, PA, USA, 1 September 2018. [Google Scholar]
- Jacazio, G.; Mornacchi, A.; Sorli, M. Development of a prognostics and health management system for electrohydraulic servoactuators of primary flight controls. In Proceedings of the 5th International Workshop on Aircraft System Technologies AST2015, Hamburg, Germany, 24–25 February 2015. [Google Scholar]
- Roemer, M.; Byington, C.; Kacprszynski, G.; Vachtsevanos, G.; Goebel, K. Prognostics. In Systems Health Management with Aerospace Applications; Wiley: Hoboken, NJ, USA, 2011. [Google Scholar]
- Vachtsevanos, G.; Lewis, F.; Roemer, M.; Hess, A.; Wu, B. Intelligent Fault Diagnosis and Prognosis for Engineering Systems, 1st ed.; Wiley: Hoboken, NJ, USA, 2007. [Google Scholar]
- De Martin, A.; Dellacasa, A.; Jacazio, G.; Sorli, M. High-Fidelity Model of Electro-Hydraulic Actuators for Primary Flight Control Systems. In Proceedings of the BATH/ASME 2018 Symposium on Fluid Power and Motion Control, Bath, UK, 12–14 September 2018. [Google Scholar]
- Shiwaku, K.; Yamada, Y.; Koarai, J.; Kawaguchi, Y. Improvement of Fatigue Life of Valve Spring Wire by Reducing Non-Metallic Inclusions. SAE Trans. 1985. [Google Scholar] [CrossRef]
- Shigley, J.E.; Mischke, C.R.; Budynas, R.G. Shigle’s Mechanical Engineering Design, 9th ed.; Tata McGraw-Hill Education: Pennsylvania Plaza, NY, USA, 2011. [Google Scholar]
- Viola, E.; Li, Y.; Fantuzzi, N. On the Stress Intensity Factors of Cracked Beams for Structural Analysis. Key Eng. Mater. 2012, 488, 379–382. [Google Scholar] [CrossRef]
- Paris, P.; Erdogan, F.A. Critical Analysis of Crack Propagation Laws. J. Fluids Eng. Trans. ASME. 1963, 85, 528–533. [Google Scholar] [CrossRef]
- Archard, J.F. Contact and Rubbing of Flat Surfaces. J. Appl. Phys. 1953, 24, 981–988. [Google Scholar] [CrossRef]
- Mornacchi, A.; Vachtsevanos, G.; Jacazio, G. Prognostics and Health Management of an Electro-Hydraulic Servo Actuator. In Proceedings of the Annual Conference of the Prognostics and Health Management Society, PHM, Coronado, CA, USA, 18–24 October 2015. [Google Scholar]
- Kullback, S.; Leibler, R.A. On Information and Sufficiency. Ann. Math. Stat. 1951, 22, 79–86. [Google Scholar] [CrossRef]
- Bradley, A.P. The Use of the Area under the ROC Curve in the Evaluation of Machine Learning Algorithms. Pattern Recognit. 1997, 30, 1145–1159. [Google Scholar] [CrossRef] [Green Version]
- De Martin, A.; Jacazio, G.; Sorli, M. Enhanced Particle Filter Framework for Improved Prognosis of Electro-Mechanical Flight Controls Actuators. In Proceedings of the Fourth European Conference of the Prognostic and Health Management Society, Utrecht, The Netherlands, 3–6 July 2018. [Google Scholar]
- Doucet, A.; Johansen, A.M. A Tutorial on Particle Filtering and Smoothing: Fifteen Years Later. Handb. Nonlinear Filter. 2009, 12, 656–704. [Google Scholar]
- Arulampalam, M.S.; Maskell, S.; Gordon, N.; Clapp, T. A Tutorial on Particle Filters for Online Nonlinear/Non-Gaussian Bayesian Tracking. IEEE Trans. Signal Process. 2002, 50, 174–188. [Google Scholar] [CrossRef] [Green Version]
- Orchard, M.E.; Vachtsevanos, G.J. A Particle-Filtering Approach for on-Line Fault Diagnosis and Failure Prognosis. Trans. Inst. Meas. Control 2009, 31, 221–246. [Google Scholar] [CrossRef]
- Acuña, D.E.; Orchard, M.E. A Theoretically Rigorous Approach to Failure Prognosis. In Proceedings of the 10th Annual Conference of the Prognostics and Health Management Society 2018 (PHM18), Philadelphia, PA, USA, 24–27 September 2018. [Google Scholar]
- Saxena, A.; Celaya, J.; Balaban, E.; Goebel, K.; Saha, B.; Saha, S.; Schwabacher, M. Metrics for Evaluating Performance of Prognostic Techniques. In Proceedings of the 2008 International Conference on Prognostics and Health Management, PHM 2008, Denver, CO, USA, 6–9 October 2008. [Google Scholar]
Occurrence | Command | Amplitude (mm) | Frequency (Hz) |
---|---|---|---|
2% | XSCAS | 0 | 0 |
Xi | 50 | 0.05 | |
60% | XSCAS | 0.3 | 2 |
Xi | 0.5 | 1.5 | |
30% | XSCAS | 0.3 | 1.5 |
Xi | 0.8 | 1 | |
8% | XSCAS | 2 | 0.8 |
Xi | 10 | 0.8 |
Feature | Description | |
---|---|---|
G1 | mean(i) | Current mean value |
G2 | (max(x)-set)/set | % displacement overshoot |
G3 | i/x | Current/displacement |
I1 | abs(fft(x))(2Hz) | Displacement FFT amplitude at 2 Hz |
I2 | mean(xcorr(i,ih)) | Mean value cross-correlation with respect to baseline (current) |
I3 | mean(xcorr(x,xh)) | Mean value cross-correlation with respect to baseline (displacement) |
I4 | mean(xcorr(x)) | Displacement auto-correlation |
I5 | rms(abs(fft(x))) | RMS displacement FFT amplitude |
I6 | rms(x) | Displacement RMS |
I7 | rms(i)/rms(x) | RMS current/RMS displacement |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nesci, A.; De Martin, A.; Jacazio, G.; Sorli, M. Detection and Prognosis of Propagating Faults in Flight Control Actuators for Helicopters. Aerospace 2020, 7, 20. https://doi.org/10.3390/aerospace7030020
Nesci A, De Martin A, Jacazio G, Sorli M. Detection and Prognosis of Propagating Faults in Flight Control Actuators for Helicopters. Aerospace. 2020; 7(3):20. https://doi.org/10.3390/aerospace7030020
Chicago/Turabian StyleNesci, Andrea, Andrea De Martin, Giovanni Jacazio, and Massimo Sorli. 2020. "Detection and Prognosis of Propagating Faults in Flight Control Actuators for Helicopters" Aerospace 7, no. 3: 20. https://doi.org/10.3390/aerospace7030020
APA StyleNesci, A., De Martin, A., Jacazio, G., & Sorli, M. (2020). Detection and Prognosis of Propagating Faults in Flight Control Actuators for Helicopters. Aerospace, 7(3), 20. https://doi.org/10.3390/aerospace7030020