Journal Description
Catalysts
Catalysts
is a peer-reviewed open access journal of catalysts and catalyzed reactions published monthly online by MDPI. The Romanian Catalysis Society (RCS) are partners of Catalysts journal and its members receive a discount on the article processing charge.
- Open Access— free for readers, with article processing charges (APC) paid by authors or their institutions.
- High Visibility: indexed within Scopus, SCIE (Web of Science), Inspec, Ei Compendex, CAPlus / SciFinder, CAB Abstracts, and other databases.
- Journal Rank: JCR - Q2 (Chemistry, Physical) / CiteScore - Q1 (General Environmental Science )
- Rapid Publication: manuscripts are peer-reviewed and a first decision is provided to authors approximately 13.9 days after submission; acceptance to publication is undertaken in 2.6 days (median values for papers published in this journal in the second half of 2024).
- Recognition of Reviewers: reviewers who provide timely, thorough peer-review reports receive vouchers entitling them to a discount on the APC of their next publication in any MDPI journal, in appreciation of the work done.
- Journal Cluster of Chemical Reactions and Catalysis: Catalysts, Chemistry, Electrochem, Inorganics, Molecules, Organics, Oxygen, Photochem, Reactions, Sustainable Chemistry.
Impact Factor:
3.8 (2023);
5-Year Impact Factor:
3.9 (2023)
Latest Articles
Evaluation of Vacuum Residue Decomposition Kinetics with a Catalyst by Thermogravimetric Analysis
Catalysts 2025, 15(5), 493; https://doi.org/10.3390/catal15050493 (registering DOI) - 20 May 2025
Abstract
►
Show Figures
The study of thermal developments of heavy oil feedstock, vacuum residue in particular, is a relevant factor for the development of technologies for the processing and production of petroleum products. This paper investigates the process of thermal decomposition of the vacuum residue in
[...] Read more.
The study of thermal developments of heavy oil feedstock, vacuum residue in particular, is a relevant factor for the development of technologies for the processing and production of petroleum products. This paper investigates the process of thermal decomposition of the vacuum residue in the manufacturing of catalyst and polymer material using thermal analysis methods, including thermogravimetric analysis (TGA) in isothermal and dynamic modes. Particular attention is paid to the measurement of kinetic parameters of thermolysis using model and non-model methods, which allows us to assess the output power and other kinetic characteristics of decomposition. The results obtained can be used for the development of new oil refining technologies for significantly increasing the efficiency and safety of processes. During the course of this study, experimental and theoretical activation energy values were obtained for the vacuum residue without a catalyst (experimentally: 91.54 kJ mol−1/theoretically: 91.35 kJ mol−1) and a sample with the presence of a catalyst (experimentally: 89.68 kJ mol−1/theoretically: 90.87 kJ mol−1). The reduction in activation energy in the presence of the catalyst confirms its catalytic activity and potential for processing heavy hydrocarbon feedstock.
Full article
Open AccessArticle
Antimony- and Bismuth-Based Ionic Liquids as Efficient Adsorbents for the Removal of Dyes
by
Anham Zafar, Nouman Rafique, Saadia Batool, Muhammad Saleem, Aiyeshah Alhodaib and Amir Waseem
Catalysts 2025, 15(5), 492; https://doi.org/10.3390/catal15050492 - 19 May 2025
Abstract
A series of ionic liquids consisting of anilinium cations with varying alkyl chains and metallic (Sb and Bi) halides as anions have been synthesized and thoroughly characterized by using multinuclear (1H and 13C) NMR, FT-IR, Raman and XPS techniques. They
[...] Read more.
A series of ionic liquids consisting of anilinium cations with varying alkyl chains and metallic (Sb and Bi) halides as anions have been synthesized and thoroughly characterized by using multinuclear (1H and 13C) NMR, FT-IR, Raman and XPS techniques. They have been exploited as adsorbents for the dye’s removal, such as malachite green, rhodamine B and Sudan II, from the aqueous solution. Various parameters like the effect of stirring rate, pH, reaction time, adsorbent amount and initial dye concentration have been optimized. Both antimony- and bismuth-based ionic liquids exhibit high adsorption efficiencies and have comparable performance for each dye. Kinetic data have been analyzed by applying kinetic models, and the best-fitted model was found to be pseudo-second order with an R2 value greater than 0.98. Adsorption capacity has been determined by analyzing the sorption data using the Langmuir and Freundlich equations, and the Langmuir isotherm model has been found to be the best fitting. The maximum adsorption capacities (qmax) derived from the Langmuir isotherm for malachite green, Sudan II and rhodamine B by M-Sb ILs were 217.36, 162.10 and 62.94 mg·g−1, whereas by M-Bi ILs, the adsorption capacities were slightly higher, at 230.18, 170.00 and 64.21 mg·g−1, respectively. Kinetic studies indicated pseudo-second-order behavior (R2 > 0.98), while thermodynamic analysis demonstrated an endothermic adsorption, and a spontaneous reaction was carried out by a physisorption process. These findings accentuate the potential of Sb- and Bi-based ionic liquids as efficient and reusable adsorbents for removing dyes from wastewater.
Full article
(This article belongs to the Special Issue Advanced Catalytic Materials and Processes for Water/Wastewater Treatment)
►▼
Show Figures

Figure 1
Open AccessFeature PaperArticle
Kinetic Understanding of the Enhanced Electroreduction of Nitrate to Ammonia for Co3O4–Modified Cu2+1O Nanowire Electrocatalyst
by
Hao Yu, Shen Yan, Jiahua Zhang and Hua Wang
Catalysts 2025, 15(5), 491; https://doi.org/10.3390/catal15050491 - 19 May 2025
Abstract
Electrocatalytic nitrate reduction reaction (NO3−RR) to ammonia (NH3) presents an alternative, sustainable approach to ammonia production. However, the existing catalysts suffer from poor NH3 yield under lower concentrations of NO3−, and the kinetic understanding
[...] Read more.
Electrocatalytic nitrate reduction reaction (NO3−RR) to ammonia (NH3) presents an alternative, sustainable approach to ammonia production. However, the existing catalysts suffer from poor NH3 yield under lower concentrations of NO3−, and the kinetic understanding of bimetal catalysis is lacking. In this study, a Co3O4–modified Cu2+1O nanowire (CoCuNWs) catalyst with a high specific surface area was synthesized to effectively produce NH3 from a 10 mM KNO3 basic solution. CoCuNWs demonstrated a high NH3 yield rate of 0.30 mmol h−1 cm−2 with an NH3 Faradaic efficiency (FE) of 96.7% at −0.2 V vs. RHE, which is 1.5 times higher than the bare Cu2+1O NWs. The synergistic effect between Co3O4 and Cu2+1O significantly enhanced both the nitrate conversion and ammonia yield. Importantly, it is revealed that the surface of CoCuNWs is kinetically more easily saturated with NO3− (NO2−) ions than that of Cu2+1O NWs, as evidenced by both the higher current density and the plateau occurring at higher NOx− concentrations. In addition, CoCuNWs exhibit a higher diffusion coefficient of NO3−, being 1.6 times higher than that of Cu2+1O NWs, which also indicates that the presence of Co3O4 could promote the diffusion and adsorption of NO3− on CoCuNWs. Moreover, the ATR–SEIRAS analysis was applied to illustrate the reduction pathway of NO3− to NH3 on CoCuNWs, which follows the formation of the key intermediate from *NO2−, *NO, *NH2OH to *NH3. This work presents a strategy for constructing dual–metal catalysts for NO3−RR and provides an insight to understand the catalysis from the perspective of the kinetics.
Full article
(This article belongs to the Special Issue Powering the Future: Advances of Catalysis in Batteries)
►▼
Show Figures

Graphical abstract
Open AccessFeature PaperArticle
Electrodeposited Co Crystalline Islands Shelled with Facile Spontaneously Deposited Pt for Improved Oxygen Reduction
by
Jelena Golubović, Lazar Rakočević, Vladimir Rajić, Miloš Milović and Svetlana Štrbac
Catalysts 2025, 15(5), 490; https://doi.org/10.3390/catal15050490 - 18 May 2025
Abstract
The cobalt crystalline islands (Cocryst) were electrochemically deposited onto a glassy carbon (GC) support and then modified by a facile spontaneous deposition of platinum. The electrocatalytic activity of the resulting Cocryst-Pt core-shell catalyst was evaluated for the oxygen reduction
[...] Read more.
The cobalt crystalline islands (Cocryst) were electrochemically deposited onto a glassy carbon (GC) support and then modified by a facile spontaneous deposition of platinum. The electrocatalytic activity of the resulting Cocryst-Pt core-shell catalyst was evaluated for the oxygen reduction reaction (ORR) in an alkaline medium. The XRD characterization of the Cocryst-Pt islands revealed that the cobalt core had a hexagonal close-packed (hcp) crystalline structure, and that the platinum shell exhibited a crystalline structure with a preferential (111) orientation. SEM images showed that the average lateral size of the Cocryst islands was 1.17 μm, which increased to 1.32 μm after adding platinum. The XPS analysis indicated that the outer layer of the bulk metallic Cocryst islands was fully oxidized. During the spontaneous deposition of platinum, the outer Co(OH)2 layer was dissolved, leaving the cobalt core in a metallic state, while the platinum shell remained only partially oxidized. The high electrochemically active surface area of the Cocryst-Pt/GC electrode, along with a suitable crystalline structure of the Cocryst-Pt islands, contributes to enhancing its ORR activity by providing a greater number of surface active sites for oxygen adsorption and subsequent reduction. The ORR on the Cocryst-Pt catalyst occurs via a four-electron reaction pathway, with onset and half-wave potentials of 1.07 V and 0.87 V, respectively, which exceed those of polycrystalline platinum and a commercial benchmark Pt/C.
Full article
(This article belongs to the Special Issue Insight into Electrocatalysts for Oxygen Reduction Reaction)
►▼
Show Figures

Figure 1
Open AccessArticle
Sustainable MgO Nanocatalyst Additives for Boosting Performance and Mitigating Emissions of Used Cooking Oil Biodiesel–Diesel Blends in Compression Ignition Engines
by
Kiran Chaudhari, Nilesh Salunke, Shakeelur Raheman Ateequr Raheman, Khursheed B. Ansari, Kapil Ashokrao Saner, Vijay Kashinath Suryawanshi and Mumtaj Shah
Catalysts 2025, 15(5), 489; https://doi.org/10.3390/catal15050489 - 17 May 2025
Abstract
With conventional fuels dwindling and emissions rising, there is a necessity to develop and assess innovative substitute fuel for compression ignition (CI) engines. This study investigates the potential of magnesium oxide (MgO) nanoparticles as a sustainable additive to enhance the performance and reduce
[...] Read more.
With conventional fuels dwindling and emissions rising, there is a necessity to develop and assess innovative substitute fuel for compression ignition (CI) engines. This study investigates the potential of magnesium oxide (MgO) nanoparticles as a sustainable additive to enhance the performance and reduce emissions of used cooking oil (UCO) biodiesel–diesel blends in CI engines. MgO nanoparticles were biosynthesized using Citrus aurantium peel extract, offering an environmentally friendly production method. A single-cylinder CI engine was used to test the performance of diesel fuel (B0), a 20% biodiesel blend (B20), and B20 blends with 30 ppm (B20M30) and 60 ppm (B20M60) MgO nanoparticles. Engine performance parameters (brake thermal efficiency (BTE), brake-specific fuel consumption (BSFC), and exhaust gas temperature (EGT)) and emission characteristics (CO, NOx, unburnt hydrocarbons (HCs), and smoke opacity) were measured. The B20M60 blend showed a 2.38% reduction in BSFC and a 3.38% increase in BTE compared to B20, with significant reductions in unburnt HC, CO, and smoke opacity. However, NOx emissions increased by 6.57%. The green synthesis method enhances sustainability, offering a promising pathway for cleaner and more efficient CI engine operation using UCO biodiesel, demonstrating the effectiveness of MgO nanoparticles.
Full article
(This article belongs to the Special Issue Waste-to-Resources Through Catalysis in Green and Sustainable Way)
►▼
Show Figures

Figure 1
Open AccessArticle
Research on Catalysts for Online Ammonia Hydrogen Production in Marine Engines: Performance Evaluation and Reaction Kinetic Modeling
by
Jin Wu, Liang Yang, Chuang Xiang, Junjie Liang, He Yang, Dilong Li, Ying Sun, Lin Lv and Neng Zhu
Catalysts 2025, 15(5), 488; https://doi.org/10.3390/catal15050488 - 17 May 2025
Abstract
One viable technical approach for achieving hydrogen-blended combustion in marine ammonia-fueled engines is to utilize online ammonia decomposition to produce hydrogen, which is then introduced into the engine for combustion. This work carried out ammonia decomposition experiments using various catalysts, examining the effects
[...] Read more.
One viable technical approach for achieving hydrogen-blended combustion in marine ammonia-fueled engines is to utilize online ammonia decomposition to produce hydrogen, which is then introduced into the engine for combustion. This work carried out ammonia decomposition experiments using various catalysts, examining the effects of temperature and space velocity on Ru/Ce0.33Zr0.58La0.03Nd0.03Pr0.03O2.09 and Ni/Ce0.36Zr0.64O2 catalysts. Based on the experimental data obtained, the kinetic parameters of ammonia decomposition were fitted using four different models: mass action law, first-order reaction, Langmuir, and Temkin–Pyzhev kinetics across two catalysts, with the subsequent mechanistic analysis of catalytic reaction processes within the reactor. The results revealed that the NH3 conversion rate of the Ru/Ce0.33Zr0.58La0.03Nd0.03Pr0.03O2.09 catalyst was superior to that of the Ni/Ce0.36Zr0.64O2 catalyst, with temperature activity windows of 250–450 °C and 400–600 °C, respectively. Within the range of 2000–32,000 mL·g−1·h−1), an increase in space velocity led to a decrease in NH3 conversion rate by approximately half. All four models were able to predict NH3 conversion rates for the different catalysts with reasonable accuracy. The activation energies for Ru/Ce0.33Zr0.58La0.03Nd0.03Pr0.03O2.09 and Ni/Ce0.36Zr0.64O2 catalysts were found to be 37.7 kJ·mol−1 and 66 kJ·mol−1, respectively. Targeting hydrogen requirements of 10–40% vol for ammonia engines, the corresponding catalytic temperatures for Ru/Ce0.33Zr0.58La0.03Nd0.03Pr0.03O2.09 and Ni/Ce0.36Zr0.64O2 were above 267 °C and 500 °C, respectively.
Full article
(This article belongs to the Section Catalytic Reaction Engineering)
►▼
Show Figures

Graphical abstract
Open AccessArticle
Highly Dispersed Pt on TiOx Embedded in Porous Carbon as Electrocatalyst for Hydrogen Evolution Reaction
by
Zihan Wei, Xin Chen, Pengfei Diao, Jiayi Liao, Zhaonan Chong, Change Yao, Zhong Ma and Guisheng Li
Catalysts 2025, 15(5), 487; https://doi.org/10.3390/catal15050487 - 17 May 2025
Abstract
►▼
Show Figures
In conventionally used carbon-supported heterogeneous platinum catalysts for hydrogen evolution reaction (HER), low Pt utilization efficiency and poor stability, resulting from weak interactions with the carbon supports, are crucial issues. Here, we report a novel hierarchical structure of TiOx nanoparticles embedded in
[...] Read more.
In conventionally used carbon-supported heterogeneous platinum catalysts for hydrogen evolution reaction (HER), low Pt utilization efficiency and poor stability, resulting from weak interactions with the carbon supports, are crucial issues. Here, we report a novel hierarchical structure of TiOx nanoparticles embedded in porous carbon with the in situ growth of highly dispersed Pt on the TiOx surface (Pt-TiOx@C). The as-prepared Pt-TiOx@C electrocatalyst showed excellent catalytic activity during HER with an overpotential of only 10 mV when the current density reached 10 mA cm−2 and the mass activity was 9.24 A mgPt−1 at an overpotential of 30 mV in 0.5 M H2SO4 solution, thus outperforming commercial Pt/C catalysts. Furthermore, it also exhibited highly stable catalytic activity over 10,000 CV cycles of an accelerated degradation test (ADT). This high HER activity and durability could be ascribed to the highly dispersed Pt feature and the strong metal–support interaction (SMSI) between Pt and TiOx. This study also provides a simple and effective method for designing highly active and stable electrocatalysts.
Full article

Figure 1
Open AccessArticle
Synchronous Removal of Organic Pollutants and Phosphorus from Emergency Wastewater in Chemical Industry Park by Plasma Catalysis System Based on Calcium Peroxide
by
Aihua Li, Chengjiang Qian, Jinfeng Wen and Tiecheng Wang
Catalysts 2025, 15(5), 486; https://doi.org/10.3390/catal15050486 - 16 May 2025
Abstract
This study employs a plasma-coupled calcium peroxide (CaO2) system to degrade tetracycline (TC) and remove phosphorus from emergency wastewater in a chemical industry park. The plasma/CaO2 system achieves optimal performance when the CaO2 dosage reaches 0.13 g/L. Higher degradation
[...] Read more.
This study employs a plasma-coupled calcium peroxide (CaO2) system to degrade tetracycline (TC) and remove phosphorus from emergency wastewater in a chemical industry park. The plasma/CaO2 system achieves optimal performance when the CaO2 dosage reaches 0.13 g/L. Higher degradation efficiencies of TC were observed at increased discharge voltages, frequencies, and under weakly acidic and weakly alkaline conditions. Variations in discharge voltage and frequency have no significant impact on the phosphorus removal efficiency, but weakly alkaline conditions favor phosphorus removal. The reactive species (·OH, 1O2, O2·−) within the plasma/CaO2 system were identified, and their roles were elucidated using radical scavengers. Subsequently, the degradation process was characterized by measuring changes in total organic carbon (TOC), chemical oxygen demand (COD), and ammonia nitrogen during the reaction, along with three-dimensional fluorescence analysis and ultraviolet-visible spectroscopy (UV-Vis). Eight intermediate products were identified through LC-MS, and two degradation pathways were clarified based on density functional theory. The toxicity analysis of the intermediate products demonstrated that the plasma/CaO2 system is an efficient, feasible, and environmentally friendly method for the synchronous removal of organic pollutants and phosphorus from emergency wastewater in a chemical industry park.
Full article
(This article belongs to the Special Issue Plasma Catalysis for Environment and Energy Applications)
►▼
Show Figures

Figure 1
Open AccessFeature PaperArticle
Exploring Perhydro-Benzyltoluene Dehydrogenation Using Sulfur-Doped PtMo/Al2O3 Catalysts
by
Kevin Alconada, Fatima Mariño, Ion Agirre and Victoria Laura Barrio
Catalysts 2025, 15(5), 485; https://doi.org/10.3390/catal15050485 - 16 May 2025
Abstract
This study investigates the dehydrogenation of perhydrobenzyltoluene, a Liquid Organic Hydrogen Carrier (LOHC), using sulfur-doped bimetallic PtMo/Al2O3 catalysts. Based on previous research that highlighted the superior performance of PtMo catalysts over monometallic Pt catalysts, this work focuses on minimizing byproduct
[...] Read more.
This study investigates the dehydrogenation of perhydrobenzyltoluene, a Liquid Organic Hydrogen Carrier (LOHC), using sulfur-doped bimetallic PtMo/Al2O3 catalysts. Based on previous research that highlighted the superior performance of PtMo catalysts over monometallic Pt catalysts, this work focuses on minimizing byproduct formation, specifically methylfluorene, through sulfur doping. Catalysts with low platinum content (<0.3 wt.%) were synthesized using the wet impregnation method by varying sulfur concentrations to study their impact on catalytic activity. Characterization techniques, including CO–DRIFT and CO–TPD, revealed the role of sulfur in selectively blocking low-coordinated Pt sites, thus improving selectivity and maintaining high dispersion. Catalytic tests revealed that samples with ≥0.1 wt.% sulfur achieved up to a threefold reduction in methylfluorene formation compared to the unpromoted PtMo/Al2O3 sample, with a molar fraction below 2% at 240 min. In parallel, these samples reached a degree of dehydrogenation (DoD) above 85% within 240 min, demonstrating that improved selectivity can be achieved without compromising catalytic performance.
Full article
(This article belongs to the Special Issue Catalysts for Energy Storage)
►▼
Show Figures

Graphical abstract
Open AccessArticle
Cu-Sn Electrocatalyst Prepared with Chemical Foaming and Electroreduction for Electrochemical CO2 Reduction
by
Caibo Zhu, Ao Yu, Yin Zhang, Wenbo Chen, Zhijian Wu, Manni Xu, Deyu Qu, Junxin Duan and Xi Li
Catalysts 2025, 15(5), 484; https://doi.org/10.3390/catal15050484 - 16 May 2025
Abstract
The conversion of CO2 through the electrochemical reduction reaction (ECO2RR) into chemicals or fuels is regarded as one of the effective ways to decrease atmospheric CO2 concentrations. In this study, a Cu-Sn bimetallic electrocatalyst (ER-SnmCunO
[...] Read more.
The conversion of CO2 through the electrochemical reduction reaction (ECO2RR) into chemicals or fuels is regarded as one of the effective ways to decrease atmospheric CO2 concentrations. In this study, a Cu-Sn bimetallic electrocatalyst (ER-SnmCunOx-t/CC) was successfully prepared via a chemical foaming method and electrochemical reduction. SEM showed that ER-Sn1Cu1Ox-500 nanoparticles were uniformly distributed on the carbon cloth, which benefited from foaming. The XPS results demonstrated the synergistic interaction between Cu and Sn and the existence of oxygen vacancies originating from the electroreduction. Due to the above features, ER-Sn1Cu1Ox-500/CC achieved 84.1% FE for HCOOH at −1.1 V vs. RHE, and the corresponding JHCOOH was up to 32.4 mA·cm−2 in the H-type cell. Especially in the flow cell, ER-Sn1Cu1Ox-500/GDE could reach a high JHCOOH of 190 mA·cm−2 at −1.1 V vs. RHE and maintained JHCOOH higher than 100 mA·cm−2 for 24 h with a formic acid selectivity over 70%, indicating both excellent catalytic activity and high HCOOH selectivity. In situ FTIR results revealed that synergism between Cu and Sn could regulate the adsorption of intermediates, thus enhancing the catalytic performance of ER-Sn1Cu1Ox-500 for ECO2RR.
Full article
(This article belongs to the Section Electrocatalysis)
►▼
Show Figures

Graphical abstract
Open AccessArticle
Selective Catalytic Reduction of NO with H2 over Pt/Pd-Containing Catalysts on Silica-Based Supports
by
Magdalena Jabłońska, Adrián Osorio Hernández, Jürgen Dornseiffer, Jacek Grams, Anqi Guo, Ulrich Simon and Roger Gläser
Catalysts 2025, 15(5), 483; https://doi.org/10.3390/catal15050483 - 15 May 2025
Abstract
Platinum- and/or palladium-containing silica-based supports were applied for the selective catalytic reduction of NOx with hydrogen (H2-SCR-DeNOx). To obtain enhanced activity and N2 selectivity below 150 °C, we varied the type and loading of noble metals (Pt
[...] Read more.
Platinum- and/or palladium-containing silica-based supports were applied for the selective catalytic reduction of NOx with hydrogen (H2-SCR-DeNOx). To obtain enhanced activity and N2 selectivity below 150 °C, we varied the type and loading of noble metals (Pt and Pd both individually and paired, 0.1–1.0 wt.-%), silica-containing supports (ZrO2/SiO2, ZrO2/SiO2/Al2O3, Al2O3/SiO2/TiO2), as well as the H2 concentration in the feed (2000–4000 ppm). All of these contributed to enhancing N2 selectivity during H2-SCR-DeNOx over the (0.5 wt.-%)Pt/Pd/ZrO2/SiO2 catalyst in the presence of 10 vol.-% of O2. H2 was completely consumed at 150 °C. A comparison of the catalytic results obtained during H2-SCR-DeNOx,(H2-)NH3-SCR-DeNOx, as well as stop-flow H2-SCR-DeNOx and temperature-programmed studies, revealed that in the temperature range between 150 and 250 °C, the continuously coupled or overlaying mechanism of NO reduction by hydrogen and ammonia based on NH3 formation at lower temperatures, which is temporarily stored at the acid sites of the support and desorbed in this temperature range, could be postulated.
Full article
(This article belongs to the Topic Advanced Materials in Chemical Engineering)
►▼
Show Figures

Figure 1
Open AccessFeature PaperArticle
Efficient Synthesis of Tetrasubstituted Furans via Lipase-Catalyzed One-Pot Sequential Multicomponent Reaction
by
Yongqi Zeng, Yong Tang, Minglu Xu, Dantong Wang, Zhi Wang, Yin Gao and Lei Wang
Catalysts 2025, 15(5), 482; https://doi.org/10.3390/catal15050482 - 15 May 2025
Abstract
Tetrasubstituted furans and their derivatives represent a versatile class of important heterocyclic frameworks widely distributed in natural products. These scaffolds also demonstrate significant potential in pharmaceutical chemistry, materials science, and organic synthesis methodologies. In this study, we successfully established a synergistic catalytic system
[...] Read more.
Tetrasubstituted furans and their derivatives represent a versatile class of important heterocyclic frameworks widely distributed in natural products. These scaffolds also demonstrate significant potential in pharmaceutical chemistry, materials science, and organic synthesis methodologies. In this study, we successfully established a synergistic catalytic system utilizing benzoylacetonitriles, aldehydes, and benzoyl chlorides as substrates, facilitated by tributylphosphine and immobilized lipase (Novozym 435), to achieve efficient synthesis of cyano-containing tetrasubstituted furans. Under optimized conditions, we obtained a series of target products exhibiting exceptional substrate tolerance with good to excellent isolated yields ranging from 80% to 94%. Additionally, we proposed a reasonable reaction mechanism and verified it through controlled experiments. This methodology not only expands the synthetic utility of lipase in non-natural transformations but also establishes a paradigm of green chemistry for the construction of tetrasubstituted furans.
Full article
(This article belongs to the Special Issue Enzyme and Biocatalysis Application)
►▼
Show Figures

Graphical abstract
Open AccessFeature PaperArticle
Laccase-Catalyzed Polymerized Natural Bioactives for Enhanced Mushroom Tyrosinase Inhibition
by
Diana Costa, Diana Rocha, Joana Santos, Jennifer Noro, Artur Ribeiro and Carla Silva
Catalysts 2025, 15(5), 481; https://doi.org/10.3390/catal15050481 - 14 May 2025
Abstract
Skin hyperpigmentation disorders, such as melasma, are linked to excessive melanin production, primarily regulated by the enzyme tyrosinase (TYR). While current inhibitors like kojic acid (KA) are effective, they often cause adverse side effects, driving the search for safer andnatural alternatives. This study
[...] Read more.
Skin hyperpigmentation disorders, such as melasma, are linked to excessive melanin production, primarily regulated by the enzyme tyrosinase (TYR). While current inhibitors like kojic acid (KA) are effective, they often cause adverse side effects, driving the search for safer andnatural alternatives. This study evaluated the TYR inhibitory potential of bioactive-rich extracts from acorn, cocoa, cork, and eucalyptus, extracted using hydroethanolic (HE) and natural deep eutectic solvents (NADES), and explored the enhancement of their bioactivity through laccase-assisted polymerization. NADES significantly improved extraction yields and preserved bioactive compounds, with cocoa extracts showing the highest TYR inhibition. Laccase-mediated polymerization further enhanced TYR inhibitory activity, particularly of NADES extracts, suggesting a more effective and sustainable approach for skincare applications. The results highlight the potential of combining green chemistry principles with enzymatic catalysis to develop eco-friendly and efficient treatments for hyperpigmentation disorders, offering a promising alternative to conventional methods.
Full article
(This article belongs to the Special Issue The Design of Protein-Based Catalysts)
►▼
Show Figures

Graphical abstract
Open AccessFeature PaperArticle
Cyclic Stability of a Bifunctional Catalyst in the Sorption-Enhanced Reverse Water–Gas Shift Reaction
by
Johannis A. Z. Pieterse, Saskia Booneveld, Gerard D. Elzinga, Vladimir Dikic, Galina Skorikova, Jurriaan Boon and Andreas Geisbauer
Catalysts 2025, 15(5), 480; https://doi.org/10.3390/catal15050480 - 13 May 2025
Abstract
Sorption-enhanced reverse water–gas shift (SE-RWGS), designated as COMAX, was studied using a Pt4A bifunctional catalyst (reactive adsorbent). The bifunctional Pt4A catalyst integrates CO2 activation and reaction with water adsorption functionality, where the active phase is loaded onto a carrier that provides a
[...] Read more.
Sorption-enhanced reverse water–gas shift (SE-RWGS), designated as COMAX, was studied using a Pt4A bifunctional catalyst (reactive adsorbent). The bifunctional Pt4A catalyst integrates CO2 activation and reaction with water adsorption functionality, where the active phase is loaded onto a carrier that provides a surface area for Pt dispersion as well as H2O adsorption capacity. The 0.3 wt% Pt-4A molecular sieve reactive sorbent was tested at a kg scale in a pressure swing (reactive) adsorption–regeneration process. More than 400 cycles over 50 days of operation were successfully demonstrated without significant decay. Cyclic stability was achieved, provided that the regeneration temperature was sufficiently high to ensure near-complete dehydration. The single-bead structure withstood the pressure swing operation effectively, with only a maximum of 2% of the total recovered reactive sorbent turning to fines (<500 μm). The successful integration of catalytic activity and water adsorption capacity into a single particle presents opportunities for the further intensification of sorption-enhanced reactions for CO2 conversion.
Full article
(This article belongs to the Special Issue Catalytic Activity on Thermochemical and Non-Thermal Plasma Conversion/Utilization of Methane and Carbon Dioxide)
►▼
Show Figures

Figure 1
Open AccessFeature PaperArticle
Active Ag-, Fe-, and AC-Modified TiO2 Mesoporous Photocatalysts for Anionic and Cationic Dye Degradation
by
Daniela Negoescu, Irina Atkinson, Mihaela Gherendi, Daniela C. Culita, Adriana Baran, Simona Petrescu, Veronica Bratan and Viorica Parvulescu
Catalysts 2025, 15(5), 479; https://doi.org/10.3390/catal15050479 - 13 May 2025
Abstract
TiO2 mesoporous supports were obtained by the sol–gel method from different precursors (titaniumethoxide, isopropoxide, or butoxide) in the presence of nonionic, cationic, and anionic surfactants. Among these samples, those obtained from Ti isopropoxide, Brij58 w/o activated carbon (AC), were selected as supports.
[...] Read more.
TiO2 mesoporous supports were obtained by the sol–gel method from different precursors (titaniumethoxide, isopropoxide, or butoxide) in the presence of nonionic, cationic, and anionic surfactants. Among these samples, those obtained from Ti isopropoxide, Brij58 w/o activated carbon (AC), were selected as supports. Photocatalysts were obtained by modifying these supports with Ag, Fe, and AgFe (each metal around 1% mass). The characterization results showed a stronger influence of titania precursors, surfactants, and AC on the texture and an insignificant effect on the crystalline structure and morphology of the obtained materials. X-ray photoelectron spectroscopy revealed the effects of AC and Fe on the Ag0 concentration and of Ag on Fe-reduced species. Based on this information, the results obtained by H2-TPR, UV–Vis, Raman, and photoluminescence spectroscopy were explained. The performance of the photocatalysts was evaluated in the degradation of Congo Red (CR) and Crystal Violet (CV) dyes under UV and visible light. The Ag-TiO2 sample exhibited the best activity in degrading CR at acidic pH and in degrading CV under basic conditions. In visible light, we observed the significant effects of the surface plasmon resonance, AC, Ag, and Fe on the activity in CR photodegradation. The proposed kinetics and mechanisms complete the study of the reactions.
Full article
(This article belongs to the Special Issue Effect of the Modification of Catalysts on the Catalytic Performance, 2nd Edition)
►▼
Show Figures

Figure 1
Open AccessArticle
Sustainable Hydrogen from Methanol: NiCuCe Catalyst Design with CO2-Driven Regeneration for Carbon-Neutral Energy Systems
by
Yankun Jiang, Liangdong Zhao and Siqi Li
Catalysts 2025, 15(5), 478; https://doi.org/10.3390/catal15050478 - 13 May 2025
Abstract
This study addresses energy transition challenges through the development of NiCuCe catalysts for high-purity hydrogen production via methanol decomposition, with carbon deposition issues mitigated by CO2-assisted regeneration. As fossil fuel depletion advances and the urgency of climate change increases, methanol-derived hydrogen
[...] Read more.
This study addresses energy transition challenges through the development of NiCuCe catalysts for high-purity hydrogen production via methanol decomposition, with carbon deposition issues mitigated by CO2-assisted regeneration. As fossil fuel depletion advances and the urgency of climate change increases, methanol-derived hydrogen (CH3OH → CO + 2H2) emerges as a carbon-neutral alternative to conventional fossil fuel-based energy systems. The catalyst’s dual Cu2+/Ni2+ active sites facilitate selective C–O bond cleavage, achieving more than 80% methanol conversion at temperatures exceeding 280 °C without the need for fossil methane inputs. Crucially, CO2 gasification enables catalyst regeneration through the conversion of 90% carbon deposits into reusable media, circumventing energy-intensive combustion processes. This dual-function system couples carbon capture to hydrogen infrastructure, thereby stabilizing production while valorizing waste CO2. This innovation minimizes reliance on rare metals through efficient regeneration cycles, mitigating resource constraints during energy crises.
Full article
(This article belongs to the Special Issue Catalytic Gasification)
►▼
Show Figures

Graphical abstract
Open AccessFeature PaperReview
Multidimensional Engineering of Nanoconfined Catalysis: Frontiers in Carbon-Based Energy Conversion and Utilization
by
Qimin Fang, Qihan Sun, Jinming Ge, Haiwang Wang and Jian Qi
Catalysts 2025, 15(5), 477; https://doi.org/10.3390/catal15050477 - 12 May 2025
Abstract
Amid global efforts toward carbon neutrality, nanoconfined catalysis has emerged as a transformative strategy to address energy transition challenges through precise regulation of catalytic microenvironments. This review systematically examines recent advancements in nanoconfined catalytic systems for carbon-based energy conversion (CO2, CH
[...] Read more.
Amid global efforts toward carbon neutrality, nanoconfined catalysis has emerged as a transformative strategy to address energy transition challenges through precise regulation of catalytic microenvironments. This review systematically examines recent advancements in nanoconfined catalytic systems for carbon-based energy conversion (CO2, CH4, etc.), highlighting their unique capability to modulate electronic structures and reaction pathways via quantum confinement and interfacial effects. By categorizing their architectures into dimension-oriented frameworks (1D nanotube channels, 2D layered interfaces, 3D core-shell structures, and heterointerfaces), we reveal how geometric constraints synergize with mass/electron transfer dynamics to enhance selectivity and stability. Critical optimization strategies—including heteroatom doping to optimize active site coordination, defect engineering to lower energy barriers, and surface modification to tailor local microenvironments—are analyzed to elucidate their roles in stabilizing metastable intermediates and suppressing catalyst deactivation. We further emphasize the integration of machine learning, in situ characterization, and modular design as essential pathways to establish structure–activity correlations and accelerate industrial implementation. This work provides a multidimensional perspective bridging fundamental mechanisms with practical applications to advance carbon-neutral energy systems.
Full article
(This article belongs to the Collection Catalytic Conversion and Utilization of Carbon-Based Energy)
►▼
Show Figures

Graphical abstract
Open AccessArticle
Structural Features Underlying the Mismatch Between Catalytic and Cytostatic Properties in L-Asparaginase from Rhodospirillum rubrum
by
Igor D. Zlotnikov, Anastasia N. Shishparyonok, Marina V. Pokrovskaya, Svetlana S. Alexandrova, Dmitry D. Zhdanov and Elena V. Kudryashova
Catalysts 2025, 15(5), 476; https://doi.org/10.3390/catal15050476 - 12 May 2025
Abstract
The underlying structural features of the mismatch between catalytic and cytostatic properties in L-asparaginase from Rhodospirillum rubrum (RrA) and three of its mutants were investigated. The rationale for selecting the specific mutations (RrAA64V, E67K; RrAR118H, G120R; RrAE149R, V150P,
[...] Read more.
The underlying structural features of the mismatch between catalytic and cytostatic properties in L-asparaginase from Rhodospirillum rubrum (RrA) and three of its mutants were investigated. The rationale for selecting the specific mutations (RrAA64V, E67K; RrAR118H, G120R; RrAE149R, V150P, F151T) is to elucidate the role of inter-subunit interaction in RrA and its impact on catalytic efficiency and stability. Bioinformatic modeling revealed a predominantly negative surface charge on RrA with limited positive charge clusters in the vicinity of the interface region. Thus, some negatively charged groups were replaced with positively charged ones to enhance the electrostatic interactions and stabilize the enzyme quaternary structure. RrAA64V, E67K and RrAR118H, G120R additionally contained an N-terminal 17-amino acid capsid peptide derived from the bacteriophage T7 (MASMTGGQQMGRGSSRQ), which could potentially affect the conformational stability of theenzymes. Circular dichroism (CD) spectroscopy was applied to the kinetic parameters analysis of Asn hydrolysis and showed that native RrA displayed a Vmax of 30 U/mg and a KM of 4.5 ± 0.5 mM. RrAE149R, V150P, and F151T exhibited a substantially increased Vmax of 57 U/mg. The catalytic efficiency of Vmax/KM also improved compared to the native enzyme: the Vmax/KM increased from approximately 7 U/mg × mM−1 (for the native enzyme) to 9 U/mg × mM−1 for Mut3. Other mutants exhibited less pronounced changes. Thermo-denaturation studies allowed us to determine the phase transition parameters of the RrA variants in comparison with commercial reference sample EcA. RrAA64V, E67K and RrAR118H, G120R exhibited the most favorable phase transition parameters, with melting temperatures (Tm) of 60.3 °C and 59.4 °C, respectively, exceeding that of the wild-type RrA (54.6 °C) and RrAE149R, V150P, F151T (52 °C). The EcA demonstrated a slightly superior thermal stability, with a Tm of 62 °C. The mutations showed a significant effect on protein stability during trypsinolysis. Therefore, RrAE149R, V150P, F151T showed higher resistance (45% activity remaining after 30 min of trypsin exposure) compared to the native RrA retained 20% activity. EcA preparations exhibited lower stability to trypsinolysis (losing over 90% activity in 15 min). The cytostatic effects were evaluated using MTT assays against K562 (leukemic) and A549 (lung carcinoma) cell lines. The MTT assays with K562 cells revealed that RrAE149R, V150P, F151T (IC50 of 10 U/mL) and RrAR118H, G120R (IC50 of 11.5 U/mL) exhibited superior antiproliferative activity compared to native enzymes RrA (IC50 of 15 U/mL) and EcA (24 U/mL). RrAE149R, V150P, F151T showed the most significant improvement in cytostatic activity. The results obtained indicate that the substitutions in RrAE149R, V150P, F151T resulted in the improvement of the enzyme biocatalytic properties and an increase in the resistance to aggregation and trypsinolysis. This highlights the role of electrostatic interactions in stabilizing the oligomeric structure of the enzyme, which eventually translates into an improvement in cytostatic efficiency and antiproliferative forces.
Full article
(This article belongs to the Section Biocatalysis)
►▼
Show Figures

Figure 1
Open AccessArticle
Ru Nanoparticle Assemblies Modified with Single Mo Atoms for Hydrogen Evolution Reactions in Seawater Electrocatalysis
by
Shuhan Wang, Jiani Qin, Yong Zhang, Shuai Chen, Wenjun Yan, Haiqing Zhou and Xiujun Fan
Catalysts 2025, 15(5), 475; https://doi.org/10.3390/catal15050475 - 12 May 2025
Abstract
►▼
Show Figures
Ru-based catalysts manifest unparalleled hydrogen evolution reaction (HER) performance, but the hydrolysis of Ru species and the accumulation of corresponding reaction intermediates greatly limit HER activity and stability. Herein, Ru nanoparticle assemblies modified with single Mo atoms and supported on N-incorporated graphene (referred
[...] Read more.
Ru-based catalysts manifest unparalleled hydrogen evolution reaction (HER) performance, but the hydrolysis of Ru species and the accumulation of corresponding reaction intermediates greatly limit HER activity and stability. Herein, Ru nanoparticle assemblies modified with single Mo atoms and supported on N-incorporated graphene (referred to as MoRu-NG) are compounded via hydrothermal and chemical vapor deposition (CVD) methods. The incorporation of single Mo atoms into Ru lattices modifies the local atomic milieu around Ru centers, significantly improving HER catalytic behavior and stability. More specifically, MoRu-NG achieves overpotentials of 53 mV and 28 mV at 10 mA cm−2, with exceptional stability in acidic and alkaline seawater solutions, respectively. In MoRu-NG, Ru atoms have a special electronic structure and thus possess optimal hydrogen adsorption energy, which indicates that excellent HER activity mainly hinges upon Ru centers. To be specific, the d-electron orbitals of Ru atoms are close to half full, giving Ru atoms moderate bond energy for the assimilation and release of hydrogen, which is beneficial for the conversion of reaction intermediates. Moreover, the incorporation of single Mo atoms facilitates the formation of O and O’-bidentate ligands, significantly enhancing the structural stability of MoRu-NG in universal-pH seawater electrolysis. This work advances a feasible construction method of hexagonal octahedral configuration (Ru-O-Mo-N-C) and provides a route to synthesize an efficient and stable catalyst for electrocatalytic HER in universal-pH seawater.
Full article

Graphical abstract
Open AccessArticle
Co-Doped Ni@Ni(OH)2 Core–Shell Catalysts for Dual-Function Water and Urea Oxidation
by
Saba A. Aladeemy, Maged N. Shaddad, Talal F. Qahtan, Abdulrahman I. Alharthi, Kamal Shalabi, Abdullah M. Al-Mayouf and Prabhakarn Arunachalam
Catalysts 2025, 15(5), 474; https://doi.org/10.3390/catal15050474 - 12 May 2025
Abstract
Crystalline–amorphous core–shell-like heterostructures have attracted considerable attention in electrocatalysis due to their unique electronic and structural properties; however, tuning the surface composition of the amorphous shell remains a major challenge. In this work, we report a simple, low-cost, one-pot hydrazine-assisted chemical deposition method
[...] Read more.
Crystalline–amorphous core–shell-like heterostructures have attracted considerable attention in electrocatalysis due to their unique electronic and structural properties; however, tuning the surface composition of the amorphous shell remains a major challenge. In this work, we report a simple, low-cost, one-pot hydrazine-assisted chemical deposition method for synthesizing a series of Co-doped Ni@Ni(OH)2 catalysts with a crystalline Ni core and an amorphous Ni(OH)2 shell. Among the prepared catalysts, the sample containing 10 wt.% cobalt (denoted as b-Co-doped Ni@Ni(OH)2) exhibited the highest electrocatalytic activity toward both the oxygen evolution reaction (OER) and the urea oxidation reaction (UOR). In 1.0 M KOH, the b-Co-doped Ni@Ni(OH)2 catalyst achieved a 40 mV lower overpotential at 50 mA·cm−2 compared to undoped Ni@Ni(OH)2 for the OER. For the UOR in 0.33 M urea/1.0 M KOH, it delivered approximately twice the anodic current density relative to the undoped sample, along with improved reaction kinetics as evidenced by a Tafel slope of 70.7 mV·dec−1. This performance enhancement is attributed to the optimized core–shell-like architecture, cobalt doping-induced electronic modulation, increased electrochemically active surface area, and improved charge transfer efficiency. Overall, this study demonstrates a promising and scalable strategy for designing advanced Ni-based bifunctional catalysts for sustainable energy conversion and wastewater treatment applications.
Full article
(This article belongs to the Special Issue Nanocatalysis: Integrating Sustainability and Innovation Across Diverse Applications)
►▼
Show Figures

Figure 1

Journal Menu
► ▼ Journal Menu-
- Catalysts Home
- Aims & Scope
- Editorial Board
- Reviewer Board
- Topical Advisory Panel
- Instructions for Authors
- Special Issues
- Topics
- Sections & Collections
- Article Processing Charge
- Indexing & Archiving
- Editor’s Choice Articles
- Most Cited & Viewed
- Journal Statistics
- Journal History
- Journal Awards
- Society Collaborations
- Editorial Office
Journal Browser
► ▼ Journal BrowserHighly Accessed Articles
Latest Books
E-Mail Alert
News
Topics
Topic in
Applied Nano, Catalysts, Materials, Nanomaterials, Polymers, Molecules
Application of Nanomaterials in Environmental Analysis
Topic Editors: Yonggang Zhao, Yun ZhangDeadline: 30 September 2025
Topic in
Energies, Materials, Catalysts, Metals, Hydrogen
Hydrogen—The New Energy Vector for the Transition of Industries "Hard to Abate"
Topic Editors: Pasquale Cavaliere, Geoffrey BrooksDeadline: 20 October 2025
Topic in
Applied Nano, Catalysts, Molecules, Nanomaterials, Water, Gels, Polymers
Water Purification and Catalytic Disintegration at the Nanoscale
Topic Editors: Michael Arkas, Ioannis Pashalidis, Dimitrios A. Giannakoudakis, Ioannis P. AnastopoulosDeadline: 30 November 2025
Topic in
Energies, Materials, Catalysts, Processes, Biomass
Advances in Biomass Conversion, 2nd Edition
Topic Editors: Jacek Grams, Agnieszka RuppertDeadline: 20 December 2025

Conferences
Special Issues
Special Issue in
Catalysts
Industrial Applications of High-Value Added Biomass Conversion
Guest Editors: Zhongyi Liu, Qiaoyun LiuDeadline: 20 May 2025
Special Issue in
Catalysts
TiO2 Photocatalysts: Design, Optimization and Application
Guest Editors: Akira Fujishima, Xintong Zhang, Tsuyoshi OchiaiDeadline: 23 May 2025
Special Issue in
Catalysts
Advances in Biomass-Based Electrocatalysts
Guest Editors: Diana M. Fernandes, Andreia F. PeixotoDeadline: 30 May 2025
Special Issue in
Catalysts
Plant-Derived Biomass Catalytic and Biocatalytic Transformation into Biorefinery Products
Guest Editors: Miguel Ladero Galán, Ernesto GonzálezDeadline: 30 May 2025
Topical Collections
Topical Collection in
Catalysts
Layered Double Hydroxides and Related Materials for Advanced Heterogeneous Catalytic Processes
Collection Editors: Ioan-Cezar Marcu, Octavian Pavel
Topical Collection in
Catalysts
Photocatalytic Water Splitting
Collection Editors: Weilong Shi, Guigao Liu
Topical Collection in
Catalysts
Advanced Catalysis and Artificial Intelligence
Collection Editors: Bin Lin, Dong Tian