Androgen Receptor Blockade Induces the Phagocytosis of MRSA and Pseudomonas aeruginosa by Monocyte-Derived Macrophages In Vitro
Abstract
1. Introduction
2. Materials and Methods
2.1. Cell Culture
2.2. Differentiation of Monocytes into Macrophages In Vitro
2.3. Flow Cytometry Analysis
2.4. Preparation of MRSA and P. aeruginosa Cultures
2.5. Host–Pathogen Interaction Assays
2.6. Gentamicin Protection Assay
2.7. Androgen Receptor Stimulation/Blockade and 5α-Reductase Inhibition
2.8. Statistical Analysis
3. Results
3.1. PMA Induces the Differentiation of Monocytes into Macrophages In Vitro
3.2. Testosterone Reduces the Uptake of MRSA and P. aeruginosa by THP-1 Macrophages In Vitro
3.3. Testosterone Dampens the Killing of MRSA and P. aeruginosa by Monocyte-Derived Macrophages In Vitro
3.4. Inhibition of the Androgen Receptor Reverses the Testosterone-Mediated Decline in the Phagocytic Functions of Macrophages
3.5. The 5-α-Reductase Inhibitor Finasteride Enhances the Phagocytic Functions of Macrophages In Vitro
4. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- El Mohtadi, M.; Whitehead, K.; Dempsey-Hibbert, N.; Belboul, A.; Ashworth, J. Estrogen deficiency–a central paradigm in age-related impaired healing? EXCLI J. 2021, 20, 99. [Google Scholar] [PubMed]
- Guo, S.A.; DiPietro, L.A. Factors affecting wound healing. J. Dent. Res. 2010, 89, 219–229. [Google Scholar] [CrossRef]
- Sproston, N.R.; Ashworth, J.J. Role of C-reactive protein at sites of inflammation and infection. Front. Immunol. 2018, 9, 754. [Google Scholar] [CrossRef]
- Fimmel, S.; Zouboulis, C. Influence of physiological androgen levels on wound healing and immune status in men. Aging Male 2005, 8, 166–174. [Google Scholar] [CrossRef]
- Toraldo, G.; Bhasin, S.; Bakhit, M.; Guo, W.; Serra, C.; Safer, J.D.; Bhawan, J.; Jasuja, R. Topical androgen antagonism promotes cutaneous wound healing without systemic androgen deprivation by blocking β-catenin nuclear translocation and cross-talk with TGF-β signaling in keratinocytes. Wound Repair Regen. 2012, 20, 61–73. [Google Scholar] [CrossRef]
- Ashcroft, G.S.; Mills, S.J. Androgen receptor–mediated inhibition of cutaneous wound healing. J. Clin. Investig. 2002, 110, 615–624. [Google Scholar] [CrossRef] [PubMed]
- Soneja, A.; Drews, M.; Malinski, T. Role of nitric oxide, nitroxidative and oxidative stress in wound healing. Pharmacol. Rep. 2005, 57, 108. [Google Scholar]
- Witte, M.B.; Barbul, A. Role of nitric oxide in wound repair. Am. J. Surg. 2002, 183, 406–412. [Google Scholar] [CrossRef] [PubMed]
- Gilliver, S.C.; Ruckshanthi, J.P.; Hardman, M.J.; Nakayama, T.; Ashcroft, G.S. Sex dimorphism in wound healing: The roles of sex steroids and macrophage migration inhibitory factor. Endocrinology 2008, 149, 5747–5757. [Google Scholar] [CrossRef]
- Ashcroft, G.S.; Greenwell-Wild, T.; Horan, M.A.; Wahl, S.M.; Ferguson, M.W. Topical estrogen accelerates cutaneous wound healing in aged humans associated with an altered inflammatory response. Am. J. Pathol. 1999, 155, 1137–1146. [Google Scholar] [CrossRef]
- Ashcroft, G.S.; Yang, X.; Glick, A.B.; Weinstein, M.; Letterio, J.J.; Mizel, D.E.; Anzano, M.; Greenwell-Wild, T.; Wahl, S.M.; Deng, C. Mice lacking Smad3 show accelerated wound healing and an impaired local inflammatory response. Nat. Cell Biol. 1999, 1, 260–266. [Google Scholar] [CrossRef]
- Gilliver, S.C. Differential Effects of Testosterone and 5α-DHT upon Cutaneous Wound Healing. Ph.D. Thesis, The University of Manchester, Manchester, UK, 2005. [Google Scholar]
- Gilliver, S.C.; Ruckshanthi, J.P.; Hardman, M.J.; Zeef, L.; Ashcroft, G.S. 5α-Dihydrotestosterone (DHT) retards wound closure by inhibiting re-epithelialization. J. Pathol. 2009, 217, 73–82. [Google Scholar] [CrossRef] [PubMed]
- Gilliver, S.C.; Ashworth, J.J.; Mills, S.J.; Hardman, M.J.; Ashcroft, G.S. Androgens modulate the inflammatory response during acute wound healing. J. Cell Sci. 2006, 119, 722–732. [Google Scholar] [CrossRef]
- Gomersall, J.; Mortimer, K.; Hassan, D.; Whitehead, K.A.; Slate, A.J.; Ryder, S.F.; Chambers, L.E.; El Mohtadi, M.; Shokrollahi, K. Ten-year analysis of bacterial colonisation and outcomes of major burn patients with a focus on Pseudomonas aeruginosa. Microorganisms 2023, 12, 42. [Google Scholar] [CrossRef]
- El Mohtadi, M.; Pilkington, L.; Liauw, C.M.; Ashworth, J.J.; Dempsey-Hibbert, N.; Belboul, A.; Whitehead, K.A. Differential engulfment of Staphylococcus aureus and Pseudomonas aeruginosa by monocyte-derived macrophages is associated with altered phagocyte biochemistry and morphology. EXCLI J. 2020, 19, 1372. [Google Scholar]
- Burnet, M.; Metcalf, D.G.; Milo, S.; Gamerith, C.; Heinzle, A.; Sigl, E.; Eitel, K.; Haalboom, M.; Bowler, P.G. A host-directed approach to the detection of infection in hard-to-heal wounds. Diagnostics 2022, 12, 2408. [Google Scholar] [CrossRef] [PubMed]
- Hornef, M.W.; Wick, M.J.; Rhen, M.; Normark, S. Bacterial strategies for overcoming host innate and adaptive immune responses. Nat. Immunol. 2002, 3, 1033–1040. [Google Scholar] [CrossRef]
- Gould, L.; Abadir, P.; Brem, H.; Carter, M.; Conner-Kerr, T.; Davidson, J.; DiPietro, L.; Falanga, V.; Fife, C.; Gardner, S. Chronic wound repair and healing in older adults: Current status and future research. Wound Repair Regen. 2015, 23, 1–13. [Google Scholar] [CrossRef]
- Nandhini, P.; Kumar, P.; Mickymaray, S.; Alothaim, A.S.; Somasundaram, J.; Rajan, M. Recent developments in methicillin-resistant Staphylococcus aureus (MRSA) treatment: A review. Antibiotics 2022, 11, 606. [Google Scholar] [CrossRef]
- Agyeman, W.Y.; Bisht, A.; Gopinath, A.; Cheema, A.H.; Chaludiya, K.; Khalid, M.; Nwosu, M.; Konka, S.; Khan, S. A systematic review of antibiotic resistance trends and treatment options for hospital-acquired multidrug-resistant infections. Cureus 2022, 14, e29956. [Google Scholar] [CrossRef] [PubMed]
- Mohamad, F.; Alzahrani, R.R.; Alsaadi, A.; Alrfaei, B.M.; Yassin, A.E.B.; Alkhulaifi, M.M.; Halwani, M. An explorative review on advanced approaches to overcome bacterial resistance by curbing bacterial biofilm formation. Infect. Drug Resist. 2023, 16, 19–49. [Google Scholar] [CrossRef] [PubMed]
- Kinter, K.J.; Anekar, A.A. Biochemistry, Dihydrotestosterone. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Negro-Vilar, A. Selective androgen receptor modulators (SARMs): A novel approach to androgen therapy for the new millennium. J. Clin. Endocrinol. Metab. 1999, 84, 3459–3462. [Google Scholar] [CrossRef] [PubMed]
- Bhasin, S. Selective androgen receptor modulators as function promoting therapies. J. Frailty Aging 2015, 4, 121. [Google Scholar] [CrossRef]
- Handelsman, D.J. Androgen Physiology, Pharmacology, Use and Misuse. In Endotext; Feingold, K.R., Ahmed, S.F., Anawalt, B., Blackman, M.R., Boyce, A., Chrousos, G., Corpas, E., de Herder, W.W., Dhatariya, K., Dungan, K., et al., Eds.; MDText.com, Inc.: South Dartmouth, MA, USA, 2020. [Google Scholar]
- El Mohtadi, M. Effect of Estrogen on Host-Pathogen Interactions in ex vivo and in vitro Models of the Inflammatory Phase of Age-Related Impaired Healing. Ph.D. Thesis, Manchester Metropolitan University, Manchester, UK, 2019. [Google Scholar]
- Belboul, A. Effect of Hormone-Driven Ageing on Inflammatory Cell Clearance of Bacteria Under Hyperglycemic Conditions. Ph.D. Thesis, Manchester Metropolitan University, Manchester, UK, 2024. [Google Scholar]
- Elsinghorst, E.A. Measurement of invasion by gentamicin resistance. In Methods in Enzymology; Academic Press: Cambridge, MA, USA, 1994; Volume 236, pp. 405–420. [Google Scholar]
- Bain, J. The many faces of testosterone. Clin. Interv. Aging 2007, 2, 567–576. [Google Scholar] [CrossRef]
- Gardner, I.H.; Safer, J.D. Progress on the road to better medical care for transgender patients. Curr. Opin. Endocrinol. Diabetes Obes. 2013, 20, 553–558. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J.; Nassau, D.E.; Patel, P.; Ramasamy, R. Low testosterone in adolescents & young adults. Front. Endocrinol. 2020, 10, 494570. [Google Scholar] [CrossRef] [PubMed]
- Waldbeser, L.S.; Ajioka, R.S.; Merz, A.J.; Puaoi, D.; Lin, L.; Thomas, M.; So, M. The opaH locus of Neisseria gonorrhoeae MS11A is involved in epithelial cell invasion. Mol. Microbiol. 1994, 13, 919–928. [Google Scholar] [CrossRef]
- Hess, D.J.; Henry-Stanley, M.J.; Wells, C.L. Gentamicin promotes Staphylococcus aureus biofilms on silk suture. J. Surg. Res. 2011, 170, 302–308. [Google Scholar] [CrossRef]
- Oelschlaeger, T.A. Mechanisms of probiotic actions–a review. Int. J. Med. Microbiol. 2010, 300, 57–62. [Google Scholar] [CrossRef]
- Zhao, R.; Wang, X.; Jiang, C.; Shi, F.; Zhu, Y.; Yang, B.; Zhuo, J.; Jing, Y.; Luo, G.; Xia, S. Finasteride accelerates prostate wound healing after thulium laser resection through DHT and AR signalling. Cell Prolif. 2018, 51, e12415. [Google Scholar] [CrossRef]
- Gilliver, S.C.; Ashworth, J.J.; Ashcroft, G.S. The hormonal regulation of cutaneous wound healing. Clin. Dermatol. 2007, 25, 56–62. [Google Scholar] [CrossRef]
- Gilliver, S.; Ashcroft, G. Sex steroids and cutaneous wound healing: The contrasting influences of estrogens and androgens. Climacteric 2007, 10, 276–288. [Google Scholar] [CrossRef]
- Ginhoux, F.; Jung, S. Monocytes and macrophages: Developmental pathways and tissue homeostasis. Nat. Rev. Immunol. 2014, 14, 392–404. [Google Scholar] [CrossRef]
- Vasina, E.; Cauwenberghs, S.; Feijge, M.; Heemskerk, J.; Weber, C.; Koenen, R. Microparticles from apoptotic platelets promote resident macrophage differentiation. Cell Death Dis. 2011, 2, e211. [Google Scholar] [CrossRef] [PubMed]
- Sintiprungrat, K.; Singhto, N.; Sinchaikul, S.; Chen, S.-T.; Thongboonkerd, V. Alterations in cellular proteome and secretome upon differentiation from monocyte to macrophage by treatment with phorbol myristate acetate: Insights into biological processes. J. Proteom. 2010, 73, 602–618. [Google Scholar] [CrossRef] [PubMed]
- Belboul, A.; Ashworth, J.; Fadel, A.; Mcloughlin, J.; Mahmoud, A.; El Mohtadi, M. Estrogen induces the alternative activation of macrophages through binding to estrogen receptor-alpha. Exp. Mol. Pathol. 2025, 143, 104971. [Google Scholar] [CrossRef]
- Shi, C.; Zhang, X.; Chen, Z.; Sulaiman, K.; Feinberg, M.W.; Ballantyne, C.M.; Jain, M.K.; Simon, D.I. Integrin engagement regulates monocyte differentiation through the forkhead transcription factor Foxp1. J. Clin. Investig. 2004, 114, 408–418. [Google Scholar] [CrossRef]
- Parry, C. Androgens Inhibit Phagocytosis by Macrophages Via the Androgen Receptor in Vitro. Master’s Thesis, Manchester Metropolitan University, Manchester, UK, 2018. [Google Scholar]
- Gomez, F.; Ruiz, P.; Lopez, R.; Rivera, C.; Romero, S.; Bernal, J. Effects of androgen treatment on expression of macrophage Fcγ receptors. Clin. Diagn. Lab. Immunol. 2000, 7, 682–686. [Google Scholar] [CrossRef]
- Beery, T.A. Sex differences in infection and sepsis. Crit. Care Nurs. Clin. 2003, 15, 55–62. [Google Scholar] [CrossRef]
- Schröder, J.; Kahlke, V.; Staubach, K.-H.; Zabel, P.; Stüber, F. Gender differences in human sepsis. Arch. Surg. 1998, 133, 1200–1205. [Google Scholar] [CrossRef] [PubMed]
- Eachempati, S.R.; Hydo, L.; Barie, P.S. Gender-based differences in outcome in patients with sepsis. Arch. Surg. 1999, 134, 1342–1347. [Google Scholar] [CrossRef]
- Dos Santos, D.C.; de Souza Bittencout, R.; Arêas, I.D.; Pena, L.S.C.; Almeida, C.F.; de Brito Guimarães, B.C.; Dórea, R.S.D.M.; Correia, T.M.L.; Júnior, M.N.S.; Morbeck, L.L.B. Effects of 5α-dihydrotestosterone on the modulation of monocyte/macrophage response to Staphylococcus aureus: An in vitro study. Biol. Sex Differ. 2023, 14, 15. [Google Scholar] [CrossRef]
- Ashcroft, G.S. Sex differences in wound healing. Adv. Mol. Cell Biol. 2004, 34, 321–328. [Google Scholar]
- Engeland, C.G.; Sabzehei, B.; Marucha, P.T. Sex hormones and mucosal wound healing. Brain Behav. Immun. 2009, 23, 629–635. [Google Scholar] [CrossRef]
- Ezenwa, V.O.; Stefan Ekernas, L.; Creel, S. Unravelling complex associations between testosterone and parasite infection in the wild. Funct. Ecol. 2012, 26, 123–133. [Google Scholar] [CrossRef]
- Hillgarth, N.; Wingfield, J.C. Testosterone and immunosuppression in vertebrates: Implications for parasite-mediated sexual selection. In Parasites and Pathogens: Effects on Host Hormones and Behavior; Springer: Berlin/Heidelberg, Germany, 1997; pp. 143–155. [Google Scholar]
- Saino, N.; Møller, A.; Bolzerna, A. Testosterone effects on the immune system and parasite infestations in the barn swallow (Hirundo rustica): An experimental test of the immunocompetence hypothesis. Behav. Ecol. 1995, 6, 397–404. [Google Scholar] [CrossRef]
- Jacobsen, H.; Klein, S.L. Sex differences in immunity to viral infections. Front. Immunol. 2021, 12, 720952. [Google Scholar] [CrossRef] [PubMed]
- Klein, S.L.; Flanagan, K.L. Sex differences in immune responses. Nat. Rev. Immunol. 2016, 16, 626–638. [Google Scholar] [CrossRef] [PubMed]
- vom Steeg, L.G.; Klein, S.L. SeXX matters in infectious disease pathogenesis. PLoS Pathog. 2016, 12, e1005374. [Google Scholar] [CrossRef]
- Bernin, H.; Lotter, H. Sex bias in the outcome of human tropical infectious diseases: Influence of steroid hormones. J. Infect. Dis. 2014, 209, S107–S113. [Google Scholar] [CrossRef] [PubMed]
- Lai, J.-J.; Lai, K.-P.; Chuang, K.-H.; Chang, P.; Yu, I.-C.; Lin, W.-J.; Chang, C. Monocyte/macrophage androgen receptor suppresses cutaneous wound healing in mice by enhancing local TNF-α expression. J. Clin. Investig. 2009, 119, 3739–3751. [Google Scholar] [CrossRef]
- D’agostino, P.; Milano, S.; Barbera, C.; Di Bella, G.; La Rosa, M.; Ferlazzo, V.; Farruggio, R.; Miceli, D.; Miele, M.; Castagnetta, L. Sex hormones modulate inflammatory mediators produced by macrophages a. Ann. N. Y. Acad. Sci. 1999, 876, 426–429. [Google Scholar] [CrossRef] [PubMed]
- Friedl, R.; Brunner, M.; Moeslinger, T.; Spieckermann, P.G. Testosterone inhibits expression of inducible nitric oxide synthase in murine macrophages. Life Sci. 2000, 68, 417–429. [Google Scholar] [CrossRef]
- Viken, K. The effect of steroids on adhesiveness, rosette-forming ability and survival of cultured, human mononuclear cells. Acta Pathol. Microbiol. Scand. Sect. C Immunol. 1976, 84, 5–12. [Google Scholar] [CrossRef]
- Magri, B.; Viganò, P.; Rossi, G.; Somigliana, E.; Gaffuri, B.; Vignali, M. Comparative effect of the calcium antagonist verapamil and the synthetic steroids gestrinone and danazol on human monocyte phagocytosis in vitro. Gynecol. Obstet. Investig. 1997, 43, 6–10. [Google Scholar] [CrossRef]
- Yamada, K.; Hayashi, T.; Kuzuya, M.; Naito, M.; Asai, K.; Iguchi, A. Physiological concentration of 17 beta-estradiol inhibits chemotaxis of human monocytes in response to monocyte chemotactic protein 1. Artery 1996, 22, 24–35. [Google Scholar] [PubMed]
- Miyagi, M.; Aoyama, H.; Morishita, M.; Iwamoto, Y. Effects of sex hormones on chemotaxis of human peripheral polymorphonuclear leukocytes and monocytes. J. Periodontol. 1992, 63, 28–32. [Google Scholar] [CrossRef] [PubMed]
- Kokal, M.; Mirzakhani, K.; Pungsrinont, T.; Baniahmad, A. Mechanisms of androgen receptor agonist-and antagonist-mediated cellular senescence in prostate cancer. Cancers 2020, 12, 1833. [Google Scholar] [CrossRef]
- Azhagiya Singam, E.R.; Tachachartvanich, P.; La Merrill, M.A.; Smith, M.T.; Durkin, K.A. Structural dynamics of agonist and antagonist binding to the androgen receptor. J. Phys. Chem. B 2019, 123, 7657–7666. [Google Scholar] [CrossRef]
- McLeod, D.G. Antiandrogenic drugs. Cancer 1993, 71, 1046–1049. [Google Scholar] [CrossRef]
- Christiansen, A.R.; Lipshultz, L.I.; Hotaling, J.M.; Pastuszak, A.W. Selective androgen receptor modulators: The future of androgen therapy? Transl. Androl. Urol. 2020, 9, S135. [Google Scholar] [CrossRef] [PubMed]
- Chaudagar, K.; Rameshbabu, S.; Mei, S.; Hirz, T.; Hu, Y.-M.; Argulian, A.; Labadie, B.; Desai, K.; Grimaldo, S.; Kahramangil, D. Androgen blockade primes NLRP3 in macrophages to induce tumor phagocytosis. bioRxiv 2023. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.-K.; Pang, H.; Wang, L.; Niu, Y.; Luo, J.; Chang, E.; Sparks, J.D.; Lee, S.O.; Chang, C. New therapy via targeting androgen receptor in monocytes/macrophages to battle atherosclerosis. Hypertension 2014, 63, 1345–1353. [Google Scholar] [CrossRef]
- Chuang, K.-H.; Altuwaijri, S.; Li, G.; Lai, J.-J.; Chu, C.-Y.; Lai, K.-P.; Lin, H.-Y.; Hsu, J.-W.; Keng, P.; Wu, M.-C. Neutropenia with impaired host defense against microbial infection in mice lacking androgen receptor. J. Exp. Med. 2009, 206, 1181–1199. [Google Scholar] [CrossRef]
- Silver, R.F.; Li, Q.; Boom, W.H.; Ellner, J.J. Lymphocyte-dependent inhibition of growth of virulent Mycobacterium tuberculosis H37Rv within human monocytes: Requirement for CD4+ T cells in purified protein derivative-positive, but not in purified protein derivative-negative subjects. J. Immunol. 1998, 160, 2408–2417. [Google Scholar] [CrossRef]
- Bini, E.I.; Mata Espinosa, D.; Marquina Castillo, B.; Barrios Payán, J.; Colucci, D.; Cruz, A.F.; Zatarain, Z.L.; Alfonseca, E.; Pardo, M.R.; Bottasso, O. The influence of sex steroid hormones in the immunopathology of experimental pulmonary tuberculosis. PLoS ONE 2014, 9, e93831. [Google Scholar] [CrossRef] [PubMed]
- Becerra-Díaz, M.; Strickland, A.B.; Keselman, A.; Heller, N.M. Androgen and androgen receptor as enhancers of M2 macrophage polarization in allergic lung inflammation. J. Immunol. 2018, 201, 2923–2933. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Hellenic Society for Microbiology. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Belboul, A.; El Mohtadi, M.; Fadel, A.; Mcloughlin, J.; Mahmoud, A.; O’Malley, C.; Ashworth, J. Androgen Receptor Blockade Induces the Phagocytosis of MRSA and Pseudomonas aeruginosa by Monocyte-Derived Macrophages In Vitro. Acta Microbiol. Hell. 2025, 70, 38. https://doi.org/10.3390/amh70040038
Belboul A, El Mohtadi M, Fadel A, Mcloughlin J, Mahmoud A, O’Malley C, Ashworth J. Androgen Receptor Blockade Induces the Phagocytosis of MRSA and Pseudomonas aeruginosa by Monocyte-Derived Macrophages In Vitro. Acta Microbiologica Hellenica. 2025; 70(4):38. https://doi.org/10.3390/amh70040038
Chicago/Turabian StyleBelboul, Amina, Mohamed El Mohtadi, Abdulmannan Fadel, Jessica Mcloughlin, Ayman Mahmoud, Caitlin O’Malley, and Jason Ashworth. 2025. "Androgen Receptor Blockade Induces the Phagocytosis of MRSA and Pseudomonas aeruginosa by Monocyte-Derived Macrophages In Vitro" Acta Microbiologica Hellenica 70, no. 4: 38. https://doi.org/10.3390/amh70040038
APA StyleBelboul, A., El Mohtadi, M., Fadel, A., Mcloughlin, J., Mahmoud, A., O’Malley, C., & Ashworth, J. (2025). Androgen Receptor Blockade Induces the Phagocytosis of MRSA and Pseudomonas aeruginosa by Monocyte-Derived Macrophages In Vitro. Acta Microbiologica Hellenica, 70(4), 38. https://doi.org/10.3390/amh70040038