Previous Issue
Volume 70, September
 
 

Acta Microbiol. Hell., Volume 70, Issue 4 (December 2025) – 2 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
16 pages, 325 KB  
Review
Polymicrobial Infections: A Comprehensive Review on Current Context, Diagnostic Bottlenecks and Future Directions
by Amit Patnaik, Titirsha Kayal and Soumya Basu
Acta Microbiol. Hell. 2025, 70(4), 39; https://doi.org/10.3390/amh70040039 - 14 Oct 2025
Abstract
Worldwide, polymicrobial infections (PMIs) account for an estimated 20–50% of severe clinical infection cases, with biofilm-associated and device-related infections reaching 60–80% in hospitalized patients. This review discusses the clinical burden of major infections in which PMIs are almost inevitable, such as diabetic foot [...] Read more.
Worldwide, polymicrobial infections (PMIs) account for an estimated 20–50% of severe clinical infection cases, with biofilm-associated and device-related infections reaching 60–80% in hospitalized patients. This review discusses the clinical burden of major infections in which PMIs are almost inevitable, such as diabetic foot infections, intra-abdominal infections, pneumonia, and biofilm-associated device infections. Globally, the PMI landscape is diverse; however, the Indian subcontinent is a PMI hotspot where high comorbidities, endemic antimicrobial resistance, and underdeveloped diagnostic capacity elevate the risks of poor outcomes. Existing diagnostic like culture-based methods, PCR panels, sequencing, and biomarker-based assays are constrained by sensitivity, turnaround times (TATs), and high costs. Vulnerable populations, particularly neonates, the elderly, immunocompromised patients, and socioeconomically marginalized groups, show case-fatality rates 2-fold higher than monomicrobial infections in similar settings. Emerging diagnostic solutions include CRISPR-based multiplex assays, artificial intelligence-based metagenomic platforms, and sensitive biosensors with point-of-care applicability. These technologies show potential in reducing the TAT (<2 h) with high accuracy (>95%). However, their translation to real-world settings depends critically on affordability, integration into healthcare pathways, and supportive policy. This will provide equitable diagnostic access, particularly in low- and middle-income countries (LMICs). Full article
15 pages, 1154 KB  
Article
Androgen Receptor Blockade Induces the Phagocytosis of MRSA and Pseudomonas aeruginosa by Monocyte-Derived Macrophages In Vitro
by Amina Belboul, Mohamed El Mohtadi, Abdulmannan Fadel, Jessica Mcloughlin, Ayman Mahmoud, Caitlin O’Malley and Jason Ashworth
Acta Microbiol. Hell. 2025, 70(4), 38; https://doi.org/10.3390/amh70040038 - 26 Sep 2025
Viewed by 323
Abstract
Age-related impaired wounds often become infected with bacteria, leading to substantial mortality and morbidity in the elderly. The decline in androgen levels with increasing age is believed to exacerbate inflammation during wound infections. Despite its well-documented anti-inflammatory activities in wound repair, little is [...] Read more.
Age-related impaired wounds often become infected with bacteria, leading to substantial mortality and morbidity in the elderly. The decline in androgen levels with increasing age is believed to exacerbate inflammation during wound infections. Despite its well-documented anti-inflammatory activities in wound repair, little is known about the effect of age-related androgen deprivation on bacterial phagocytosis in impaired chronic wounds. The aim of this study was to investigate the effect of age-related testosterone deprivation on the phagocytic functions of THP-1 monocyte-derived macrophages to eliminate Gram-positive and Gram-negative bacteria in vitro. Host–pathogen interaction experiments were conducted to quantify the macrophage-mediated clearance of two common wound-associated bacteria, methicillin-resistant Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa, under in vitro environments that model testosterone levels representative of those found in elderly males, healthy young adults and testosterone replacement therapy (TRT). Testosterone and its metabolite 5α-dihydrotestosterone (DHT) significantly dampened the macrophage-mediated phagocytosis of both MRSA and P. aeruginosa in a dose-dependent manner (p < 0.05). Blockade of the androgen receptor (AR) using enzalutamide confirmed that testosterone mediates bacterial clearance through binding to the AR. Blocking the conversion of testosterone to DHT through stimulation of macrophages with the 5-α-reductase inhibitor finasteride reversed the testosterone-mediated effects on bacterial clearance, which confirmed that testosterone could potentially dampen the innate phagocytic responses in macrophages through conversion to DHT. Novel findings in this study suggest that the selective manipulation of the AR and/or blockade of testosterone–DHT conversion may provide effective therapeutic treatments to combat wound infections in the elderly. Full article
Show Figures

Figure 1

Previous Issue
Back to TopTop