Madden–Julian Oscillation Modulation of Antarctic Sea Ice
Abstract
1. Introduction
2. Data and Methods
3. Results
3.1. Annual Cycle of Antarctic Sea Ice
3.2. The MJO and Antarctic Sea Ice
3.2.1. Identifying MJO Phases and Time Lags with the Strongest Relationship
3.2.2. MJO Modulation of Sea Ice in May
3.2.3. MJO Modulation of Sea Ice in July
3.2.4. MJO Modulation of Sea Ice in September
3.2.5. MJO Modulation of Sea Ice in November and January
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, J.; Curry, J.A.; Martinson, D.G. Interpretation of Recent Antarctic Sea Ice Variability. Geophys. Res. Lett. 2004, 31, L02205. [Google Scholar] [CrossRef]
- Lefebvre, W.; Goosse, H. Influence of the Southern Annular Mode on the Sea Ice-Ocean System: The Role of the Thermal and Mechanical Forcing. Ocean Sci. 2005, 1, 145–157. [Google Scholar] [CrossRef]
- Turner, J.; Comiso, J.C.; Marshall, G.J.; Lachlan-Cope, T.A.; Bracegirdle, T.; Maksym, T.; Meredith, M.P.; Wang, Z.; Orr, A. Non-Annular Atmospheric Circulation Change Induced by Stratospheric Ozone Depletion and Its Role in the Recent Increase of Antarctic Sea Ice Extent. Geophys. Res. Lett. 2009, 36, L08502. [Google Scholar] [CrossRef]
- Holland, P.R.; Kwok, R. Wind-Driven Trends in Antarctic Sea-Ice Drift. Nat. Geosci. 2012, 5, 872–875. [Google Scholar] [CrossRef]
- Matear, R.J.; O’Kane, T.J.; Risbey, J.S.; Chamberlain, M. Sources of Heterogeneous Variability and Trends in Antarctic Sea-Ice. Nat. Commun. 2015, 6, 8656. [Google Scholar] [CrossRef]
- Blanchard-Wrigglesworth, E.; Roach, L.A.; Donohoe, A.; Ding, Q. Impact of Winds and Southern Ocean SSTs on Antarctic Sea Ice Trends and Variability. J. Clim. 2021, 34, 949–965. [Google Scholar] [CrossRef]
- Manabe, S.; Spelman, M.J.; Stouffer, R.J. Transient Responses of a Coupled Ocean-Atmosphere Model to Gradual Changes of Atmospheric CO2. Part II: Seasonal Response. J. Clim. 1992, 5, 105–126. [Google Scholar] [CrossRef]
- Eicken, H.; Fischer, H.; Lemke, P. Effects of the Snow Cover on Antarctic Sea Ice and Potential Modulation of Its Response to Climate Change. Ann. Glaciol. 1995, 21, 369–376. [Google Scholar] [CrossRef][Green Version]
- Powell, D.C.; Markus, T.; Stössel, A. Effects of Snow Depth Forcing on Southern Ocean Sea Ice Simulations. J. Geophys. Res. Oceans 2005, 110, C06001. [Google Scholar] [CrossRef]
- Liu, J.; Curry, J.A. Accelerated Warming of the Southern Ocean and Its Impacts on the Hydrological Cycle and Sea Ice. Proc. Natl. Acad. Sci. USA 2010, 107, 14987–14992. [Google Scholar] [CrossRef]
- Jacobs, S.S.; Comiso, J.C. Climate Variability in the Amundsen and Bellingshausen Seas. J. Clim. 1997, 10, 697–709. [Google Scholar] [CrossRef]
- Kohout, A.L.; Williams, M.J.M.; Dean, S.M.; Meylan, M.H. Storm-Induced Sea-Ice Breakup and the Implications for Ice Extent. Nature 2014, 509, 604–607. [Google Scholar] [CrossRef]
- Eayrs, C.; Li, X.; Raphael, M.N.; Holland, D.M. Rapid Decline in Antarctic Sea Ice in Recent Years Hints at Future Change. Nat. Geosci. 2021, 14, 460–464. [Google Scholar] [CrossRef]
- Purich, A.; Doddridge, E.W. Record Low Antarctic Sea Ice Coverage Indicates a New Sea Ice State. Commun. Earth Environ. 2023, 4, 1–9. [Google Scholar] [CrossRef]
- Goosse, H.; Fichefet, T. Importance of Ice-Ocean Interactions for the Global Ocean Circulation: A Model Study. J. Geophys. Res. Oceans 1999, 104, 23337–23355. [Google Scholar] [CrossRef]
- Rintoul, S.R. The Global Influence of Localized Dynamics in the Southern Ocean. Nature 2018, 558, 209–218. [Google Scholar] [CrossRef] [PubMed]
- Langhorne, P.J.; Squire, V.A.; Fox, C.; Haskell, T.G. Break-up of Sea Ice by Ocean Waves. Ann. Glaciol. 1998, 27, 438–442. [Google Scholar] [CrossRef]
- Squire, V.A. Ocean Wave Interactions with Sea Ice: A Reappraisal. Annu. Rev. Fluid Mech. 2020, 52, 37–60. [Google Scholar] [CrossRef]
- Zhang, J. Increasing Antarctic Sea Ice under Warming Atmospheric and Oceanic Conditions. J. Clim. 2007, 20, 2515–2529. [Google Scholar] [CrossRef]
- Stammerjohn, S.; Massom, R.; Rind, D.; Martinson, D. Regions of Rapid Sea Ice Change: An Inter-Hemispheric Seasonal Comparison. Geophys. Res. Lett. 2012, 39, L06501. [Google Scholar] [CrossRef]
- Heil, P.; Fowler, C.W.; Lake, S.E. Antarctic Sea-Ice Velocity as Derived from SSM/I Imagery. Ann. Glaciol. 2006, 44, 361–366. [Google Scholar] [CrossRef]
- Raphael, M.N. The Influence of Atmospheric Zonal Wave Three on Antarctic Sea Ice Variability. J. Geophys. Res. Atmos. 2007, 112, D12112. [Google Scholar] [CrossRef]
- Raphael, M.N.; Hobbs, W. The Influence of the Large-Scale Atmospheric Circulation on Antarctic Sea Ice during Ice Advance and Retreat Seasons. Geophys. Res. Lett. 2014, 41, 5037–5045. [Google Scholar] [CrossRef]
- Liang, K.; Wang, J.; Luo, H.; Yang, Q. The Role of Atmospheric Rivers in Antarctic Sea Ice Variations. Geophys. Res. Lett. 2023, 50, e2022GL102588. [Google Scholar] [CrossRef]
- Vichi, M. A Statistical Definition of the Antarctic Marginal Ice Zone. Cryosphere Discuss. 2021, 2021, 1–23. [Google Scholar] [CrossRef]
- Vichi, M. An Indicator of Sea Ice Variability for the Antarctic Marginal Ice Zone. Cryosphere 2022, 16, 4087–4106. [Google Scholar] [CrossRef]
- Himmich, K.; Vancoppenolle, M.; Madec, G.; Sallée, J.B.; Holland, P.R.; Lebrun, M. Drivers of Antarctic Sea Ice Advance. Nat. Commun. 2023, 14, 6219. [Google Scholar] [CrossRef]
- Hobbs, W.R.; Massom, R.; Stammerjohn, S.; Reid, P.; Williams, G.; Meier, W. A Review of Recent Changes in Southern Ocean Sea Ice, Their Drivers and Forcings. Glob. Planet. Change 2016, 143, 228–250. [Google Scholar] [CrossRef]
- Wang, J.; Massonnet, F.; Goosse, H.; Luo, H.; Barthélemy, A.; Yang, Q. Synergistic Atmosphere-Ocean-Ice Influences Have Driven the 2023 All-Time Antarctic Sea-Ice Record Low. Commun. Earth Environ. 2024, 5, 1–9. [Google Scholar] [CrossRef]
- Baba, K.; Minobe, S.; Kimura, N.; Wakatsuchi, M. Intraseasonal Variability of Sea-ice Concentration in the Antarctic with Particular Emphasis on Wind Effect. J. Geophys. Res. Oceans 2006, 111, C12023. [Google Scholar] [CrossRef]
- Zhang, C.; Li, S. Causes of the Record-Low Antarctic Sea-Ice in Austral Summer 2022. Atmos. Ocean. Sci. Lett. 2023, 16, 100353. [Google Scholar] [CrossRef]
- Simmonds, I. Modes of Atmospheric Variability over the Southern Ocean. J. Geophys. Res. Oceans 2003, 108, SOV 5-1–SOV 5-30. [Google Scholar] [CrossRef]
- Hogg, A.M.C.; Blundell, J.R. Interdecadal Variability of the Southern Ocean. J. Phys. Ocean. 2006, 36, 1626–1645. [Google Scholar] [CrossRef]
- Lin, H.; Brunet, G. Extratropical Response to the MJO: Nonlinearity and Sensitivity to the Initial State. J. Atmos. Sci. 2018, 75, 219–234. [Google Scholar] [CrossRef]
- Keppler, L.; Landschützer, P. Regional Wind Variability Modulates the Southern Ocean Carbon Sink. Sci. Rep. 2019, 9, 7384. [Google Scholar] [CrossRef]
- Turner, J.; Marshall, G.J.; Clem, K.; Colwell, S.; Phillips, T.; Lu, H. Antarctic Temperature Variability and Change from Station Data. Int. J. Climatol. 2020, 40, 2986–3007. [Google Scholar] [CrossRef]
- Madden, R.A.; Julian, P.R. Detection of a 40–50 Day Oscillation in the Zonal Wind in the Tropical Pacific. J. Atmos. Sci. 1971, 28, 702–708. [Google Scholar] [CrossRef]
- Madden, R.A.; Julian, P.R. Description of Global-Scale Circulation Cells in the Tropics with a 40–50 Day Period. J. Atmos. Sci. 1972, 29, 1109–1123. [Google Scholar] [CrossRef]
- Hendon, H.H.; Salby, M.L. The Life Cycle of the Madden–Julian Oscillation. J. Atmos. Sci. 1994, 51, 2225–2237. [Google Scholar] [CrossRef]
- Madden, R.A.; Julian, P.R. Observations of the 40–50-Day Tropical Oscillation—A Review. Mon. Weather Rev. 1994, 122, 814–837. [Google Scholar] [CrossRef]
- Zhang, C. Madden-Julian Oscillation. Rev. Geophys. 2005, 43, 2004RG000158. [Google Scholar] [CrossRef]
- Lin, H. The Madden-Julian Oscillation. Atmos. Ocean 2022, 60, 338–359. [Google Scholar] [CrossRef]
- Sobel, A.; Maloney, E. Moisture Modes and the Eastward Propagation of the MJO. J. Atmos. Sci. 2013, 70, 187–192. [Google Scholar] [CrossRef]
- Lafleur, D.M.; Barrett, B.S.; Henderson, G.R. Some Climatological Aspects of the Madden–Julian Oscillation (MJO). J. Clim. 2015, 28, 6039–6053. [Google Scholar] [CrossRef]
- Hoskins, B.J.; Karoly, D.J. The Steady Linear Response of a Spherical Atmosphere to Thermal and Orographic Forcing. J. Atmos. Sci. 1981, 38, 1179–1196. [Google Scholar] [CrossRef]
- Roundy, P.E. Tropical–extratropical interactions. In Intraseasonal Variability in the Atmosphere-Ocean Climate System; Springer: Berlin/Heidelberg, Germany, 2011; pp. 497–512. [Google Scholar]
- Zhang, J.; Lindsay, R.; Schweiger, A.; Steele, M. The Impact of an Intense Summer Cyclone on 2012 Arctic Sea Ice Retreat. Geophys. Res. Lett. 2013, 40, 720–726. [Google Scholar] [CrossRef]
- Yuan, X.; Kaplan, M.R.; Cane, M.A. The Interconnected Global Climate System—A Review of Tropical–Polar Teleconnections. J. Clim. 2018, 31, 5765–5792. [Google Scholar] [CrossRef]
- Zheng, C.; Chang, E.K.M. The Role of MJO Propagation, Lifetime, and Intensity on Modulating the Temporal Evolution of the MJO Extratropical Response. J. Geophys. Res. Atmos. 2019, 124, 5352–5378. [Google Scholar] [CrossRef]
- Zheng, C.; Chang, E.K.M. The Role of Extratropical Background Flow in Modulating the MJO Extratropical Response. J. Clim. 2020, 33, 4513–4536. [Google Scholar] [CrossRef]
- Henderson, G.R.; Barrett, B.S.; Lafleur, D.M. Arctic Sea Ice and the Madden–Julian Oscillation (MJO). Clim. Dyn. 2014, 43, 2185–2196. [Google Scholar] [CrossRef]
- Park, H.-S.; Lee, S.; Son, S.-W.; Feldstein, S.B.; Kosaka, Y. The Impact of Poleward Moisture and Sensible Heat Flux on Arctic Winter Sea Ice Variability. J. Clim. 2015, 28, 5030–5040. [Google Scholar] [CrossRef]
- Roy, R.; Arblaster, J.M.; Wheeler, M.C.; Lim, E.P. Understanding MJO Teleconnections to the Southern Hemisphere Extratropics During El Niño, La Niña, and Neutral Years. Geophys. Res. Lett. 2025, 52, 1. [Google Scholar] [CrossRef]
- Parkinson, C.L.; Cavalieri, D.J. Antarctic Sea Ice Variability and Trends, 1979–2010. Cryosphere 2012, 6, 871–880. [Google Scholar] [CrossRef]
- Simpkins, G.R.; Ciasto, L.M.; England, M.H. Observed Variations in Multidecadal Antarctic Sea Ice Trends during 1979–2012. Geophys. Res. Lett. 2013, 40, 3643–3648. [Google Scholar] [CrossRef]
- Holland, P.R. The Seasonality of Antarctic Sea Ice Trends. Geophys. Res. Lett. 2014, 41, 4230–4237. [Google Scholar] [CrossRef]
- Turner, J.; Hosking, J.S.; Bracegirdle, T.J.; Marshall, G.J.; Phillips, T. Recent Changes in Antarctic Sea Ice. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2015, 373, 20140163. [Google Scholar] [CrossRef]
- Holland, M.M.; Landrum, L.; Raphael, M.; Stammerjohn, S. Springtime Winds Drive Ross Sea Ice Variability and Change in the Following Autumn. Nat. Commun. 2017, 8, 731. [Google Scholar] [CrossRef]
- Handcock, M.S.; Raphael, M.N. Modeling the Annual Cycle of Daily Antarctic Sea Ice Extent. Cryosphere 2020, 14, 2159–2172. [Google Scholar] [CrossRef]
- Bonan, D.B.; Dörr, J.; Wills, R.C.; Thompson, A.F.; Årthun, M. Sources of Low-Frequency Variability in Observed Antarctic Sea Ice. Cryosphere 2024, 18, 2141–2159. [Google Scholar] [CrossRef]
- Ionita, M. Large-Scale Drivers of the Exceptionally Low Winter Antarctic Sea Ice Extent in 2023. Front. Earth Sci. 2024, 12, 1333706. [Google Scholar] [CrossRef]
- Shepherd, A.; Fricker, H.A.; Farrell, S.L. Trends and Connections across the Antarctic Cryosphere. Nature 2018, 558, 223–232. [Google Scholar] [CrossRef] [PubMed]
- Zwally, H.J.; Parkinson, C.L.; Comiso, J.C. Variability of Antarctic Sea Ice: And Changes in Carbon Dioxide. Science 1983, 220, 1005–1012. [Google Scholar] [CrossRef] [PubMed]
- Worby, A.P.; Geiger, C.A.; Paget, M.J.; Van Woert, M.L.; Ackley, S.F.; DeLiberty, T.L. Thickness Distribution of Antarctic Sea Ice. J. Geophys. Res. Oceans 2008, 113, C05S92. [Google Scholar] [CrossRef]
- Pohl, B.; Fauchereau, N.; Reason, C.J.C.; Rouault, M. Relationships between the Antarctic Oscillation, the Madden–Julian Oscillation, and ENSO, and Consequences for Rainfall Analysis. J. Clim. 2010, 23, 238–254. [Google Scholar] [CrossRef]
- Flatau, M.; Kim, Y.J. Interaction between the MJO and Polar Circulations. J. Clim. 2013, 26, 3562–3574. [Google Scholar] [CrossRef]
- Fauchereau, N.; Pohl, B.; Lorrey, A. Extratropical Impacts of the Madden–Julian Oscillation over New Zealand from a Weather Regime Perspective. J. Clim. 2016, 29, 2161–2175. [Google Scholar] [CrossRef]
- Henderson, G.R.; Barrett, B.S.; Lois, A.; Elsaawy, H. Time-Lagged Response of the Antarctic and High-Latitude Atmosphere to Tropical MJO Convection. Mon. Weather Rev. 2018, 146, 1219–1231. [Google Scholar] [CrossRef]
- Flatau, M.K.; Henderson, G.R.; McLay, J.G. Tropics–extratropics interactions: The influence of Madden–Julian oscillation on annular modes. In Atmospheric Oscillations; Elsevier: Amsterdam, The Netherlands, 2025; pp. 321–333. [Google Scholar]
- Renwick, J.A.; Kohout, A.; Dean, S. Atmospheric Forcing of Antarctic Sea Ice on Intraseasonal Time Scales. J. Clim. 2012, 25, 5962–5975. [Google Scholar] [CrossRef]
- Kohyama, T.; Hartmann, D.L. Antarctic Sea Ice Response to Weather and Climate Modes of Variability. J. Clim. 2016, 29, 721–741. [Google Scholar] [CrossRef]
- Wang, G.; Hendon, H.H.; Arblaster, J.M.; Lim, E.-P.; Abhik, S.; van Rensch, P. Compounding Tropical and Stratospheric Forcing of the Record Low Antarctic Sea-Ice in 2016. Nat. Commun. 2019, 10, 13. [Google Scholar] [CrossRef]
- Lee, H.J.; Seo, K.H. Impact of the Madden-Julian Oscillation on Antarctic Sea Ice and Its Dynamical Mechanism. Sci. Rep. 2019, 9, 10761. [Google Scholar] [CrossRef]
- Zwally, H.J.; Comiso, J.C.; Parkinson, C.L.; Campbell, W.J.; Carsey, F.D.; Gloersen, P. Antarctic Sea Ice, 1973–1976: Satellite Passive-Microwave Observations; Scientific and Technical Information Branch, National Aeronautics and Space Administration (NASA): Washington, DC, USA, 1983. [Google Scholar]
- Parkinson, C.L.; Cavalieri, D.J. Arctic Sea Ice Variability and Trends, 1979–2006. J. Geophys. Res. Oceans 2008, 113, C07003. [Google Scholar] [CrossRef]
- Fetterer, F.; Knowles, K.; Meier, W.N.; Savoie, M.; Windnagel, A.K. Sea Ice Index, Version 3; NSIDC Special Report; National Snow and Ice Data Center: Boulder, CO, USA, 2017. [Google Scholar]
- Cavalieri, D.; Parkinson, C.; Gloersen, P.; Zwally, H.J. Sea Ice Concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS Passive Microwave Data, Version 1; NASA National Snow and Ice Data Center Distributed Active Archive Center: Boulder, CO, USA, 1996. [Google Scholar]
- Wang, J.; Luo, H.; Yang, Q.; Liu, J.; Yu, L.; Shi, Q.; Han, B. An Unprecedented Record Low Antarctic Sea-Ice Extent during Austral Summer 2022. Adv. Atmos. Sci. 2022, 39, 1591–1597. [Google Scholar] [CrossRef]
- Wheeler, M.C.; Hendon, H.H. An All-Season Real-Time Multivariate MJO Index: Development of an Index for Monitoring and Prediction. Mon. Weather Rev. 2004, 132, 1917–1932. [Google Scholar] [CrossRef]
- Gottschalck, J.; Wheeler, M.; Weickmann, K.; Vitart, F.; Savage, N.; Lin, H.; Hendon, H.; Waliser, D.; Sperber, K.; Nakagawa, M.; et al. A Framework for Assessing Operational Madden–Julian Oscillation Forecasts: A CLIVAR MJO Working Group Project. Bull. Am. Meteorol. Soc. 2010, 91, 1247–1258. [Google Scholar] [CrossRef]
- Kumar, A.; Zhu, J.; Wang, W. Assessing Predictive Potential Associated with the MJO during the Boreal Winter. Mon. Weather Rev. 2020, 148, 4957–4969. [Google Scholar] [CrossRef]
- Jiang, X.; Adames, Á.F.; Kim, D.; Maloney, E.D.; Lin, H.; Kim, H.; Zhang, C.; DeMott, C.A.; Klingaman, N.P. Fifty Years of Research on the Madden-Julian Oscillation: Recent Progress, Challenges, and Perspectives. J. Geophys. Res. Atmos. 2020, 125, e2019JD030911. [Google Scholar] [CrossRef]
- Tseng, K.C.; Maloney, E.; Barnes, E. The Consistency of MJO Teleconnection Patterns: An Explanation Using Linear Rossby Wave Theory. J. Clim. 2019, 32, 531–548. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 Global Reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Wilks, D.S. Statistical Methods in the Atmospheric Sciences; Academic Press: Cambridge, MA, USA, 2011; Volume 100. [Google Scholar]
- Vichi, M.; Eayrs, C.; Alberello, A.; Bekker, A.; Bennetts, L.; Holland, D.; de Jong, E.; Joubert, W.; MacHutchon, K.; Messori, G.; et al. Effects of an Explosive Polar Cyclone Crossing the Antarctic Marginal Ice Zone. Geophys. Res. Lett. 2019, 46, 5948–5958. [Google Scholar] [CrossRef]
- Wachter, P.; Reiser, F.; Friedl, P.; Jacobeit, J. A New Approach to Classification of 40 Years of Antarctic Sea Ice Concentration Data. Int. J. Climatol. 2020, 41, E2683–E2699. [Google Scholar] [CrossRef]
- Lukens, K.E.; Feldstein, S.B.; Yoo, C.; Lee, S. The Dynamics of the Extratropical Response to Madden–Julian Oscillation Convection. Q. J. R. Meteorol. Soc. 2017, 143, 1095–1106. [Google Scholar] [CrossRef]
- Matthews, A.J. Primary and Successive Events in the Madden–Julian Oscillation. Q. J. R. Meteorol. Soc. 2008, 134, 439–453. [Google Scholar] [CrossRef]
- Zampieri, L.; Goessling, H.F.; Jung, T. Predictability of Antarctic Sea Ice Edge on Subseasonal Time Scales. Geophys. Res. Lett. 2019, 46, 9719–9727. [Google Scholar] [CrossRef]
- Marín, J.C.; Bozkurt, D.; Barrett, B.S. Atmospheric Blocking Trends and Seasonality around the Antarctic Peninsula. J. Clim. 2022, 35, 3803–3818. [Google Scholar] [CrossRef]
- Bozkurt, D.; Marín, J.C.; Verdugo, C.; Barrett, B.S. Atmospheric Blocking and Temperatures in the Antarctic Peninsula. Sci. Total Environ. 2024, 931, 172852. [Google Scholar] [CrossRef]
- Bozkurt, D.; Rondanelli, R.; Marín, J.C.; Garreaud, R. Foehn Event Triggered by an Atmospheric River Underlies Record-Setting Temperature Along Continental Antarctica. J. Geophys. Res. Atmos. 2018, 123, 3871–3892. [Google Scholar] [CrossRef]
- Xiao, C.; Duan, A.; Yao, Y.; Tang, Y.; Wang, Q. Role of the Subtropical Southern Indian Ocean in the Interannual Variability of Antarctic Summer Sea Ice. Atmos. Res. 2024, 311, 107723. [Google Scholar] [CrossRef]
- Baba, K.; Renwick, J. Aspects of intraseasonal variability of Antarctic sea ice in austral winter related to ENSO and SAM events. J. Glaciol. 2017, 63, 838–846. [Google Scholar] [CrossRef]
- Raphael, M.N.; Handcock, M.S. A New Record Minimum for Antarctic Sea Ice. Nat. Rev. Earth Environ. 2022, 3, 215–216. [Google Scholar] [CrossRef]
- Yang, J.; Xiao, C.; Liu, J.; Li, S.; Qin, D. Variability of Antarctic Sea Ice Extent over the Past 200 Years. Sci. Bull. 2021, 66, 2394–2404. [Google Scholar] [CrossRef]
- Peng, G.; Meier, W.N.; Scott, D.J.; Savoie, M.H. A Long-Term and Reproducible Passive Microwave Sea Ice Concentration Data Record for Climate Studies and Monitoring. Earth Syst. Sci. Data 2013, 5, 311–318. [Google Scholar] [CrossRef]










Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barrett, B.S.; Lafleur, D.M.; Henderson, G.R. Madden–Julian Oscillation Modulation of Antarctic Sea Ice. Glacies 2025, 2, 16. https://doi.org/10.3390/glacies2040016
Barrett BS, Lafleur DM, Henderson GR. Madden–Julian Oscillation Modulation of Antarctic Sea Ice. Glacies. 2025; 2(4):16. https://doi.org/10.3390/glacies2040016
Chicago/Turabian StyleBarrett, Bradford S., Donald M. Lafleur, and Gina R. Henderson. 2025. "Madden–Julian Oscillation Modulation of Antarctic Sea Ice" Glacies 2, no. 4: 16. https://doi.org/10.3390/glacies2040016
APA StyleBarrett, B. S., Lafleur, D. M., & Henderson, G. R. (2025). Madden–Julian Oscillation Modulation of Antarctic Sea Ice. Glacies, 2(4), 16. https://doi.org/10.3390/glacies2040016

