Reconciling Divergent Ages for the Oldest Recorded Air-Breathing Land Animal, the Millipede, Pneumodesmus newmani Wilson & Anderson, 2004: A Review of the Geology and Ages of the Basal Old Red Sandstone Stonehaven Group (Silurian–Early Devonian), Aberdeenshire, Scotland
Abstract
1. Introduction
2. Structural Units
2.1. Inland Exposures
2.2. Coastal Exposures
3. Descriptions and Interpretations of the Northern and Southern Blocks
3.1. Northern Block
3.1.1. Sediments
3.1.2. Fossils
3.1.3. Detrital Zircon U/Pb Dates
3.1.4. Summary
3.2. Southern Block
3.2.1. Sediments
3.2.2. Fossils
3.2.3. Detrital Zircon U/Pb Dates
3.2.4. Summary
4. Conclusions
5. Future Work
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wilson, H.; Anderson, L. Morphology and taxonomy of Paleozoic millipedes (Diplopoda: Chilognatha: Archipolypoda) from Scotland. J. Paleontol. 2004, 78, 169–184. [Google Scholar] [CrossRef]
- Brookfield, M.E.; Catlos, E.J.; Suarez, S.E. Myriapod divergence times differ between molecular clock and fossil evidence: U/Pb zircon ages of the earliest fossil millipede-bearing sediments and their significance. Hist. Biol. 2020, 33, 2014–2018. [Google Scholar] [CrossRef]
- Buatois, L.A.; Davies, N.S.; Gibling, M.R.; Krapovickas, V.; Labandeira, C.C.; MacNaughton, R.B.; Mángano, M.G.; Minter, N.J.; Shillito, A.P. The Invasion of the Land in Deep Time: Integrating Paleozoic Records of Paleobiology, Ichnology, Sedimentology, and Geomorphology. Integr. Comp. Biol. 2022, 62, 297–331. [Google Scholar] [CrossRef]
- Wellman, C.H.; Lopes, G.; McKellar, Z.; Hartley, A. Age of the basal ‘Lower Old Red Sandstone’ Stonehaven Group of Scotland: The oldest reported air-breathing land animal is Silurian (late Wenlock) in age. J. Geol. Soc. 2023, 181, jgs2023-138. [Google Scholar] [CrossRef]
- Melchin, M.J.; Sadler, P.M.; Cramer, B.D. Chapter 21—The Silurian period. In Geologic Time Scale 2020; Gradstein, F.M., Ogg, J.G., Schmitz, M.D., Ogg, G.M., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 695–732. [Google Scholar] [CrossRef]
- Becker, R.T.; Marshall, J.A.E.; Da Silva, A.-C.; Agterberg, F.P.; Gradstein, F.M.; Ogg, J.G. Chapter 22—The Devonian Period. In Geologic Time Scale 2020; Gradstein, F.M., Ogg, J.G., Schmitz, M.D., Ogg, G.M., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 733–810. [Google Scholar] [CrossRef]
- Westoll, T.S. The vertebrate-bearing strata of Scotland. In Proceedings of the 18th International Geological Congress, London, UK, 31 December 1951; Volume 2, pp. 5–21. [Google Scholar]
- Marshall, J.E.A. Palynology of the Stonehaven Group, Scotland: Evidence for a mid-Silurian age and its geological implications. Geol. Mag. 1991, 128, 283–286. [Google Scholar] [CrossRef]
- Wellman, C.H. A land plant microfossil assemblage of Mid Silurian age from the Stonehaven Group, Scotland. J. Micropalaeontol. 1993, 12, 47–66. [Google Scholar] [CrossRef]
- Suarez, S.E.; Brookfield, M.E.; Catlos, E.J.; Stöckli, D.F. A U-Pb zircon age constraint on the oldest-recorded air-breathing land animal. PLoS ONE 2017, 12, e0179262. [Google Scholar] [CrossRef]
- Gillen, G.; Trewin, N.H. Dunnottar to Stonehaven and the Highland Boundary Fault. In Excursion Guide to the Geology of the Aberdeen Area; Trewin, N.H., Kneller, B.C., Gillen, C., Eds.; Scottish Academic Press: Edinburgh, UK, 1986; pp. 265–273. [Google Scholar]
- McKellar, Z. Sedimentology of the Lower Old Red Sandstone of the Northern Midland Valley Basin and Grampian Outliers, Scotland: Implications for Post-Orogenic Basin Development. Ph.D. Thesis, University of Aberdeen, Aberdeen, UK, 2017; 303p. [Google Scholar]
- McKellar, Z.; Hartley, A.J. Caledonian foreland basin sedimentation: A new depositional model for the Upper Silurian-Lower Devonian Lower Old Red Sandstone of the Midland Valley Basin, Scotland. Basin Res. 2021, 33, 754–778. [Google Scholar] [CrossRef]
- Campbell, R. The geology of northeastern Kincardineshire. Trans. R. Soc. Edinb. 1913, 48, 1–37. [Google Scholar] [CrossRef]
- MacGregor, A.R. Fife and Angus Geology: An Excursion Guide. Excursion 1. Arbroath, Crawton and Stonehaven, 3rd ed.; The Pentland Press: Edinburgh, UK, 1996. [Google Scholar]
- Hartley, A.J.; Leleu, S. Sedimentological constraints on the late Silurian history of the Highland Boundary Fault, Scotland: Implications for Midland Valley Basin development. J. Geol. Soc. 2015, 172, 213–217. [Google Scholar] [CrossRef]
- Shillito, A.P.; Davies, N.S. Archetypically Siluro-Devonian ichnofauna in the Cowie Formation, Scotland: Implications for the myriapod fossil record and Highland Boundary Fault Movement. Proc. Geol. Assoc. 2017, 128, 815–828. [Google Scholar] [CrossRef]
- Anderson, J.G.C. The Geology of the Highland Border: Stonehaven to Arran. Trans. R. Soc. Edinb. 1947, 61, 479–515. [Google Scholar] [CrossRef]
- McKay, L.; Shipton, Z.K.; Lunn, R.J.; Andrews, B.; Raub, T.D.; Boyce, A.J. Detailed internal structure and along-strike variability of the core of a plate boundary fault: The Highland Boundary fault, Scotland. J. Geol. Soc. 2020, 177, 283–296. [Google Scholar] [CrossRef]
- Phillips, E.R. Petrology and Provenance of the Siluro-Devonian (Old Red Sandstone Facies) Sedimentary Rocks of the Midland Valley, Scotland; British Geological Survey Internal Report IR/07/040; British Geological Survey: Nottingham, UK, 2007; 65p.
- Smith, N.D. Transverse bars and braiding in the lower Platte River, Nebraska. Geol. Soc. Am. Bull. 1971, 82, 3407–3420. [Google Scholar] [CrossRef]
- Miall, A.D. Fluvial Depositional Systems; Springer International: Cham, Switzerland, 2014; 316p. [Google Scholar]
- Li, Z.; Wang, Y.; Zhu, W.; Gao, H.; Liu, F.; Xing, W.; Zhang, C.; Qiao, Q.; Lei, X. Fluvial Responses to Late Quaternary Climate Change in a Humid and Semi-Humid Transitional Area: Insights from the Upper Huaihe River, Eastern China. Water 2023, 15, 1767. [Google Scholar] [CrossRef]
- Finotello, A.; Ielpi, A.; Lapôtre, M.G.A.; Lazarus, E.D.; Ghinassi, M.; Carniello, L.; Favaro, S.; Tognin, D.; D’Alpaos, A. Vegetation enhances curvature-driven dynamics in meandering rivers. Nat. Commun. 2024, 15, 1968. [Google Scholar] [CrossRef]
- Wang, S.A. Method for Estimating the Hydrodynamic Values of Anastomosing Rivers: The Expression of Channel Morphological Parameters. Water 2024, 16, 163. [Google Scholar] [CrossRef]
- Makaske, B. Anastomosing rivers: A review of their classification, origin and sedimentary products. Earth-Sci. Rev. 2001, 53, 149–196. [Google Scholar] [CrossRef]
- Ferguson, R.I. The Threshold between Meandering and Braiding. In Channels and Channel Control Structures; Smith, K.V.H., Ed.; Springer: Berlin/Heidelberg, Germany, 1984; pp. 749–763. [Google Scholar] [CrossRef]
- Gibling, M.R.; Davies, N.S. Palaeozoic landscapes shaped by plant evolution. Nat. Geosci. 2012, 5, 99–105. [Google Scholar] [CrossRef]
- Retallack, G.J. Chapter 21—Paleozoic paleosols. In Developments in Earth Surface Processes; Martini, I.P., Chesworth, W., Eds.; Elsevier: Amsterdam, The Netherlands, 1992; Volume 2, pp. 543–564. [Google Scholar] [CrossRef]
- Retallack, G.J. Ordovician-Devonian lichen canopies before evolution of woody trees. Gondwana Res. 2022, 106, 211–223. [Google Scholar] [CrossRef]
- Williams, G.E. Flood deposits of the sand-bed ephemeral streams of central Australia. Sedimentology 1971, 17, 1–40. [Google Scholar] [CrossRef]
- Nanson, G.G.; Rust, B.R.; Taylor, G. Coexistent mud braids and anastomosing channel in an arid-zone river: Cooper Creek, central Australia. Geology 1986, 14, 175–178. [Google Scholar] [CrossRef]
- Pickup, G. Event frequency and landscape stability on the flood plain systems of arid central Australia. Quat. Sci. Rev. 1991, 10, 463–473. [Google Scholar] [CrossRef]
- Bourke, M.C. Cyclical Construction and Destruction of Flood Dominated Semiarid Central Australia. In Variability in Stream Erosion and Sediment Transport; Olive, L.J., Loughlan, R., Kesby, J.A., Eds.; International Association of Hydrological Sciences Publication: Wallingford, UK, 1994; Volume 224, pp. 113–123. [Google Scholar]
- Webster, M.; Sadler, P.; Kooser, M.; Fowler, E. Combining stratigraphic sections and museum collections to increase biostratigraphic resolution. In High-Resolution Approaches in Stratigraphic Paleontology; Harries, P.J., Ed.; Springer: Dordrecht, The Netherlands, 2008; pp. 95–128. [Google Scholar] [CrossRef]
- White, J. Palynodata Datafile: 2006 Version. Geological Survey of Canada Open File Report 5793. 2008. Available online: https://paleobotany.ru/palynodata (accessed on 13 February 2025).
- Stanley, E.A. The problem of reworked pollen and spores in marine sediments. Mar. Geol. 1966, 4, 397–408. [Google Scholar] [CrossRef]
- Burgess, N.D.; Richardson, J.B. Late Wenlock to Early Přídolí cryptospores and miospores from South and southwest Wales, Great Britain. Palaeontographica B 1995, 236, 1–44. [Google Scholar]
- Rubinstein, C.V.; Steemans, P. Miospore assemblages from the Silurian–Devonian boundary, in borehole A1-61, Ghadamis Basin, Libya. Rev. Palaeobot. Palynol. 2002, 118, 397–421. [Google Scholar] [CrossRef]
- Burgess, N.D.; Richardson, J.B. Silurian cryptospores and miospores from the type Wenlock area, Shropshire, England. Palaeontology 1991, 34, 601–628. [Google Scholar]
- Wetherall, P.M.; Dorning, K.; Wellman, C.H. Palynology, biostratigraphy, and depositional environments around the Ludlow-Pridoli boundary at Woodbury Quarry, Herefordshire, England. Boll. Soc. Paleontol. Ital. 1999, 38, 397–404. [Google Scholar]
- Steemans, P.; Le Hérissé, A.; Bozdogan, N. Ordovician and Silurian cryptospores and miospores from southeastern Turkey. Rev. Palaeobot. Palynol. 1996, 93, 35–76. [Google Scholar] [CrossRef]
- McKellar, Z.; Hartley, A.J.; Morton, A.; Frei, D. A Multidisciplinary Approach to Sediment Provenance Analysis of the Late Silurian-Devonian Lower Old Red Sandstone succession, Northern Midland Valley Basin, Scotland. J. Geol. Soc. 2020, 177, 297–314. [Google Scholar] [CrossRef]
- Horstwood, M.S.A.; Košler, J.; Gehrels, G.; Jackson, S.E.; McLean, N.M.; Paton, C.; Pearson, N.J.; Sircombe, K.; Sylvester, P.; Vermeesch, P.; et al. Community-Derived Standards for LA-ICP-MS U-(Th-)Pb Geochronology—Uncertainty Propagation, Age Interpretation and Data Reporting. Geostand. Geoanalytical Res. 2016, 40, 311–332. [Google Scholar] [CrossRef]
- Schoene, B.; Condon, D.J.; Morgan, L.; McLean, N. Precision and Accuracy in Geochronology. Elements 2013, 9, 19–24. [Google Scholar] [CrossRef]
- Sharman, G.R.; Matthew, A.; Malkowsi, A. Needles in a haystack: Detrital zircon U/Pb ages and the maximum depositional age of modern global sediment. Earth-Sci. Rev. 2020, 203, 103109. [Google Scholar] [CrossRef]
- Garza, H.K.; Catlos, E.J.; Chamberlain, K.R.; Suarez, S.E.; Brookfield, M.E.; Stockli, D.F.; Batchelor, R.A. How old is the Ordovician–Silurian boundary at Dob’s Linn, Scotland? Integrating LA-ICP-MS and CAID-TIMS U-Pb zircon dates. Geol. Mag. 2023, 160, 1775–1789. [Google Scholar] [CrossRef]
- Dickinson, W.R.; Gehrels, G.E. Use of U-Pb ages of detrital zircons to infer maximum depositional ages of strata: A test against a Colorado Plateau Mesozoic database. Earth Planet. Sci. Lett. 2009, 288, 115–125. [Google Scholar] [CrossRef]
- Bridge, J.S.; Lunt, I.A. Depositional models for braided rivers. In Braided Rivers; Sambrook Smith, G.H., Best, J.L., Bristow, C.S., Petts, G.E., Eds.; Blackwell Publishing: Oxford, UK, 2004; pp. 11–50. [Google Scholar]
- Allen, J.R.L. A quantitative model of grain size and sedimentary structures in lateral deposit. Geol. J. 2007, 7, 129–146. [Google Scholar] [CrossRef]
- Fielding, C.R.; Allen, J.P.; Alexander, J.; Gibling, M.R.; Rygel, M.C.; Calder, J.H. Fluvial Systems and their Deposits in Hot, Seasonal Semiarid and Subhumid Settings: Modern and Ancient Examples. In From River to Rock Record: The Preservation of Fluvial Sediments and Their Subsequent Interpretation; Davidson, S.K., Leleu, S., North, C.P., Eds.; Society for Sedimentary Geology Special Publication; SEPM Society for Sedimentary Geology: Claremore, OK, USA, 2011; Volume 97, pp. 89–111. [Google Scholar] [CrossRef]
- Colombera, L.; Mountney, N.P.; McCaffrey, W.D. A quantitative approach to fluvial facies models: Methods and example results. Sedimentology 2013, 60, 1526–1558. [Google Scholar] [CrossRef]
- Dewey, J.F.; Strachan, R.A. Changing Silurian–Devonian relative plate motion in the Caledonides: Sinistral transpression to sinistral transtension. J. Geol. Soc. 2003, 160, 219–229. [Google Scholar] [CrossRef]
- Westoll, T.S. A new cephalaspid fish from the Downtonian of Scotland, with notes on the structure and classification of ostracoderms. Trans. R. Soc. Edinb. 1945, 61, 341–357. [Google Scholar] [CrossRef]
- Ritchie, A. Ateleaspis tessellata Traquair, a non-cornate Cephalaspid from the Upper Silurian of Scotland. J. Linn. Soc. (Zool.) 1967, 47, 69–81. [Google Scholar] [CrossRef]
- Heintz, A. Additional remarks about Hemicyclaspis from Jeløya, southern Norway. Nor. Geol. Tidsskr. 1974, 54, 375–384. [Google Scholar]
- Blieck, A.; Elliott, D.K. Pteraspidomorphs (Vertebrata), the Old Red Sandstone, and the special case of the Brecon Beacons National Park, Wales, U.K. Proc. Geol. Assoc. 2017, 128, 438–446. [Google Scholar] [CrossRef]
- Dineley, D.L. New specimens of Traquairaspis from Canada. Palaeontology 1964, 7, 210–219. [Google Scholar]
- Tarrant, P.R. The ostracoderm Phialaspis from the Lower Devonian of the Welsh Borderland and South Wales. Palaeontology 1991, 34, 399–438. [Google Scholar]
- Elliott, D.K. Siluro-Devonian fish biostratigraphy of the Canadian arctic islands. Proc. Linn. Soc. New South Wales 1984, 107, 197–209. [Google Scholar]
- Dec, M. Traquairaspididae and Cyathaspididae (Heterostraci) from the Lower Devonian of Poland. Ann. Paléontol. 2020, 106, 13–23. [Google Scholar] [CrossRef]
- Talimaa, V. Vertebrate complexes in the heterofacial Lower Devonian deposits of Timan-Pechora Province. In Palaeozoic Microvertebrate Biochronology and Global Marine/Non-Marine Correlation (1991–1995) State of Research; Turner, S., Ed.; UNESCO-I.U.G.S. IGCP No. 328; Ichthyolith Issues, Special Publication 1; J. Zidek Serv: Socorro, NM, USA, 1995; 72p. [Google Scholar]
- Blom, H. A new anaspid fish from the Middle Silurian Cowie Harbour Fish Bed of Stonehaven, Scotland. J. Vertebr. Paleontol. 2008, 28, 594–600. [Google Scholar] [CrossRef]
- Blom, H.; Märss, T.; Miller, C. Silurian and earliest Devonian birkeniid anaspids from the Northern Hemisphere. Trans. R. Soc. Edinb. Earth Sci. 2002, 92, 263–323. [Google Scholar] [CrossRef]
- Davies, N.S.; Turnery, P.; Sansom, I.J. A revised stratigraphy of the Ringerike Group (Upper Silurian, Oslo, Norway). Nor. J. Geol. 2005, 85, 193–201. [Google Scholar]
- Kiaer, J. A new Downtonian fauna in the Sandstone Series of the Kristiania area: A preliminary report. Vidensabers Selskrab Skrifter I Matematisk-Naturvidenskabelig Klasse Kristiania 1911, 1911, 1–22. [Google Scholar]
- Kjellesvig-Waering, E.N. The Silurian Eurypterida of the Welsh Borderland. J. Paleontol. 1961, 35, 789–835. [Google Scholar]
- Tetlie, O.E. Distribution and dispersal history of Eurypterida (Chelicerata). Palaeogeogr. Palaeoclimatol. Palaeoecol. 2007, 252, 557–574. [Google Scholar] [CrossRef]
- Störmer, L. Dictyocaris salter, a large crustacean from the Upper Silurian and Downtonian. Nor. Geol. Tidsskr. 1935, 15, 267–298. [Google Scholar]
- O’Connell, M. The habitat of the Eurypterida. Bull. Buffalo Soc. Nat. Hist. 1916, 11, 277. [Google Scholar]
- Ritchie, A. Palaeontological Studies on Scottish Silurian Fish Beds. Upublished Ph.D. Thesis, University of Edinburgh, Edinburgh, UK, 1963; 170p. [Google Scholar]
- Van der Brugghen, W. Dictyocaris, een enigmatisch fossiel uit het Silur. Grondboor Hamuir 1995, 1, 18–22. [Google Scholar]
- Brookfield, M.E.; Catlos, E.J.; Garca, H.K. The oldest ‘millipede’-plant association? Age, paleoenvironments and sources of the Silurian Lake sediments at Kerrera, Argyll and Bute, Scotland. Hist. Biol. 2024, 1–13. [Google Scholar] [CrossRef]
- Vermeesch, P. On the treatment of discordant detrital zircon U–Pb data. Geochronology 2021, 3, 247–257. [Google Scholar] [CrossRef]
- Kendall, R.S. The Old Red Sandstone of Britain and Ireland: A review. Proc. Geol. Assoc. 2017, 128, 409–421. [Google Scholar] [CrossRef]
- Lehnert, O.; Fryda, J.; Joachimski, M.; Meinhold, G.; Calner, M.; Čáp, P. The ‘Přídolí hothouse’, a trigger of faunal overturns across the latest Silurian Transgression Bioevent. In Proceedings of the 3rd IGCP 591 Annual Meeting, Lund, Sweden, 9–19 June 2013; Lindskog, A., Mehlqvist, K., Eds.; Lund University: Lund, Sweden, 2013; pp. 175–176. [Google Scholar]
- Howard, B.L.; Sharman, G.R.; Crowley, J.L.; Wersan, E.R. The leaky chronometer: Evidence for systematic cryptic Pb loss in laser ablation U-Pb dating of zircon relative to CA-TIMS. Terra Nova 2025, 37, 19–25. [Google Scholar] [CrossRef]
- Mehlqvist, K.; Larsson, K.; Vajda, V. Linking upper Silurian terrestrial and marine successions—Palynological study from Skåne, Sweden. Rev. Palaeobot. Palynol. 2014, 202, 1–14. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brookfield, M.E.; Catlos, E.J.; Garza, H.K. Reconciling Divergent Ages for the Oldest Recorded Air-Breathing Land Animal, the Millipede, Pneumodesmus newmani Wilson & Anderson, 2004: A Review of the Geology and Ages of the Basal Old Red Sandstone Stonehaven Group (Silurian–Early Devonian), Aberdeenshire, Scotland. Foss. Stud. 2025, 3, 6. https://doi.org/10.3390/fossils3020006
Brookfield ME, Catlos EJ, Garza HK. Reconciling Divergent Ages for the Oldest Recorded Air-Breathing Land Animal, the Millipede, Pneumodesmus newmani Wilson & Anderson, 2004: A Review of the Geology and Ages of the Basal Old Red Sandstone Stonehaven Group (Silurian–Early Devonian), Aberdeenshire, Scotland. Fossil Studies. 2025; 3(2):6. https://doi.org/10.3390/fossils3020006
Chicago/Turabian StyleBrookfield, Michael E., Elizabeth J. Catlos, and Hector K. Garza. 2025. "Reconciling Divergent Ages for the Oldest Recorded Air-Breathing Land Animal, the Millipede, Pneumodesmus newmani Wilson & Anderson, 2004: A Review of the Geology and Ages of the Basal Old Red Sandstone Stonehaven Group (Silurian–Early Devonian), Aberdeenshire, Scotland" Fossil Studies 3, no. 2: 6. https://doi.org/10.3390/fossils3020006
APA StyleBrookfield, M. E., Catlos, E. J., & Garza, H. K. (2025). Reconciling Divergent Ages for the Oldest Recorded Air-Breathing Land Animal, the Millipede, Pneumodesmus newmani Wilson & Anderson, 2004: A Review of the Geology and Ages of the Basal Old Red Sandstone Stonehaven Group (Silurian–Early Devonian), Aberdeenshire, Scotland. Fossil Studies, 3(2), 6. https://doi.org/10.3390/fossils3020006