Large-Scale Fluorescence Microscopy Analysis of Lipid Membrane Conformational Changes Optimized and Enabled by an AI-Guided Image Detection Method
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation of the GUV Lipid Solution
2.2. Preparation of the 96-Well Plate of GUVs
2.3. Fluorescence Microscopy
2.4. AI Image Analysis
2.5. Analyzing GUV Growth Under Varying Conditions
2.6. GUV Rupture Fluorescence Imaging Assay
3. Results and Discussion
3.1. Development of an AI-Guided Image Detection Method for GUVs
3.1.1. High-Throughput Construction and Characterization of GUVs
3.1.2. Training and Validation of an AI-Guided Detection of GUVs
3.1.3. Survey of Various Automated Image Analysis Methods
3.2. AI-Guided Optimization and Analysis of GUVs
3.2.1. Optimization of Conditions to Prepare Physiological GUVs
3.2.2. High-Throughput GUV Rupture Assay
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| GUV | Giant unilamellar vesicles |
| YOLO | “You Only Look Once” method |
| DMSO | Dimethyl sulfoxide |
| SDS | Sodium dodecyl sulfate |
References
- Nair, K.S.; Bajaj, H. Advances in Giant Unilamellar Vesicle Preparation Techniques and Applications. Adv. Colloid Interface Sci. 2023, 318, 102935. [Google Scholar] [CrossRef] [PubMed]
- Matosevic, S. Synthesizing Artificial Cells from Giant Unilamellar Vesicles: State-of-the Art in the Development of Microfluidic Technology. BioEssays 2012, 34, 992–1001. [Google Scholar] [CrossRef] [PubMed]
- Pazzi, J.; Subramaniam, A.B. Dynamics of Giant Vesicle Assembly from Thin Lipid Films. J. Colloid Interface Sci. 2024, 661, 1033–1045. [Google Scholar] [CrossRef] [PubMed]
- Dimova, R. Giant Vesicles and Their Use in Assays for Assessing Membrane Phase State, Curvature, Mechanics, and Electrical Properties. Annu. Rev. Biophys. 2019, 48, 93–119. [Google Scholar] [CrossRef]
- Jiang, W.; Wu, Z.; Gao, Z.; Wan, M.; Zhou, M.; Mao, C.; Shen, J. Artificial Cells: Past, Present and Future. ACS Nano 2022, 16, 15705–15733. [Google Scholar] [CrossRef]
- Cho, E.; Lu, Y. Compartmentalizing Cell-Free Systems: Toward Creating Life-Like Artificial Cells and Beyond. ACS Synth. Biol. 2020, 9, 2881–2901. [Google Scholar] [CrossRef]
- Buddingh’, B.C.; van Hest, J.C.M. Artificial Cells: Synthetic Compartments with Life-like Functionality and Adaptivity. Acc. Chem. Res. 2017, 50, 769–777. [Google Scholar] [CrossRef]
- Ai, Y.; Xie, R.; Xiong, J.; Liang, Q. Microfluidics for Biosynthesizing: From Droplets and Vesicles to Artificial Cells. Small 2020, 16, 1903940. [Google Scholar] [CrossRef]
- Lo, C.H.; Zeng, J. Application of Polymersomes in Membrane Protein Study and Drug Discovery: Progress, Strategies, and Perspectives. Bioeng. Transl. Med. 2023, 8, e10350. [Google Scholar] [CrossRef]
- Feigenson, G.W. Phase Behavior of Lipid Mixtures. Nat. Chem. Biol. 2006, 2, 560–563. [Google Scholar] [CrossRef]
- Feigenson, G.W. Phase Diagrams and Lipid Domains in Multicomponent Lipid Bilayer Mixtures. Biochim. Biophys. Acta Biomembr. 2009, 1788, 47–52. [Google Scholar] [CrossRef] [PubMed]
- Mao, S.; Kuldinow, D.; Haataja, M.P.; Košmrlj, A. Phase Behavior and Morphology of Multicomponent Liquid Mixtures. Soft Matter 2019, 15, 1297–1311. [Google Scholar] [CrossRef]
- Bagatolli, L.; Sunil Kumar, P.B. Phase Behavior of Multicomponent Membranes: Experimental and Computational Techniques. Soft Matter 2009, 5, 3234. [Google Scholar] [CrossRef]
- Kahya, N.; Pécheur, E.-I.; de Boeij, W.P.; Wiersma, D.A.; Hoekstra, D. Reconstitution of Membrane Proteins into Giant Unilamellar Vesicles via Peptide-Induced Fusion. Biophys. J. 2001, 81, 1464–1474. [Google Scholar] [CrossRef] [PubMed]
- Girard, P.; Pécréaux, J.; Lenoir, G.; Falson, P.; Rigaud, J.-L.; Bassereau, P. A New Method for the Reconstitution of Membrane Proteins into Giant Unilamellar Vesicles. Biophys. J. 2004, 87, 419–429. [Google Scholar] [CrossRef]
- Balleza, D. Mechanical Properties of Lipid Bilayers and Regulation of Mechanosensitive Function. Channels 2012, 6, 220–233. [Google Scholar] [CrossRef]
- Mangala Prasad, V.; Blijleven, J.S.; Smit, J.M.; Lee, K.K. Visualization of Conformational Changes and Membrane Remodeling Leading to Genome Delivery by Viral Class-II Fusion Machinery. Nat. Commun. 2022, 13, 4772. [Google Scholar] [CrossRef]
- Shendrik, P.; Golani, G.; Dharan, R.; Schwarz, U.S.; Sorkin, R. Membrane Tension Inhibits Lipid Mixing by Increasing the Hemifusion Stalk Energy. ACS Nano 2023, 17, 18942–18951. [Google Scholar] [CrossRef]
- Witkowska, A.; Heinz, L.P.; Grubmüller, H.; Jahn, R. Tight Docking of Membranes Before Fusion Represents a Metastable State with Unique Properties. Nat. Commun. 2021, 12, 3606. [Google Scholar] [CrossRef]
- Heo, P.; Park, J.-B.; Shin, Y.-K.; Kweon, D.-H. Visualization of SNARE-Mediated Hemifusion Between Giant Unilamellar Vesicles Arrested by Myricetin. Front. Mol. Neurosci. 2017, 10, 93. [Google Scholar] [CrossRef]
- Tavakoli, A.; Hu, S.; Ebrahim, S.; Kachar, B. Hemifusomes and Interacting Proteolipid Nanodroplets Mediate Multi-Vesicular Body Formation. Nat. Commun. 2025, 16, 4609. [Google Scholar] [CrossRef] [PubMed]
- Pazzi, J.E. A Comprehensive Characterization of Surface-Assembled Populations of Giant Liposomes Using Novel Confocal Microscopy-Based Methods. Ph.D. Thesis, University of California, Merced, CA, USA, 2021. [Google Scholar]
- Cooper, A.; Subramaniam, A.B. Ultrahigh Yields of Giant Vesicles Obtained Through Mesophase Evolution and Breakup. Soft Matter 2024, 20, 9547–9561. [Google Scholar] [CrossRef] [PubMed]
- Messager, L.; Gaitzsch, J.; Chierico, L.; Battaglia, G. Novel Aspects of Encapsulation and Delivery Using Polymersomes. Curr. Opin. Pharmacol. 2014, 18, 104–111. [Google Scholar] [CrossRef] [PubMed]
- Bangham, A.D.; Standish, M.M.; Watkins, J.C. Diffusion of Univalent Ions Across the Lamellae of Swollen Phospholipids. J. Mol. Biol. 1965, 13, 238-IN27. [Google Scholar] [CrossRef]
- Shohda, K.; Takahashi, K.; Suyama, A. A Method of Gentle Hydration to Prepare Oil-Free Giant Unilamellar Vesicles That Can Confine Enzymatic Reactions. Biochem. Biophys. Rep. 2015, 3, 76–82. [Google Scholar] [CrossRef]
- Ngassam, V.N.; Su, W.-C.; Gettel, D.L.; Deng, Y.; Yang, Z.; Wang-Tomic, N.; Sharma, V.P.; Purushothaman, S.; Parikh, A.N. Recurrent Dynamics of Rupture Transitions of Giant Lipid Vesicles at Solid Surfaces. Biophys. J. 2021, 120, 586–597. [Google Scholar] [CrossRef]
- Cooper, A.; Girish, V.; Subramaniam, A.B. Osmotic Pressure Enables High-Yield Assembly of Giant Vesicles in Solutions of Physiological Ionic Strengths. Langmuir 2023, 39, 5579–5590. [Google Scholar] [CrossRef]
- Stein, H.; Spindler, S.; Bonakdar, N.; Wang, C.; Sandoghdar, V. Production of Isolated Giant Unilamellar Vesicles Under High Salt Concentrations. Front. Physiol. 2017, 8, 63. [Google Scholar] [CrossRef]
- Kajii, K.; Shimomura, A.; Higashide, M.T.; Oki, M.; Tsuji, G. Effects of Sugars on Giant Unilamellar Vesicle Preparation, Fusion, PCR in Liposomes, and Pore Formation. Langmuir 2022, 38, 8871–8880. [Google Scholar] [CrossRef]
- Oglęcka, K.; Rangamani, P.; Liedberg, B.; Kraut, R.S.; Parikh, A.N. Oscillatory Phase Separation in Giant Lipid Vesicles Induced by Transmembrane Osmotic Differentials. Elife 2014, 3, e03695. [Google Scholar] [CrossRef]
- Hasan, S.; Karal, M.A.S.; Akter, S.; Ahmed, M.; Ahamed, M.K.; Ahammed, S. Influence of Sugar Concentration on the Vesicle Compactness, Deformation and Membrane Poration Induced by Anionic Nanoparticles. PLoS ONE 2022, 17, e0275478. [Google Scholar] [CrossRef]
- Steinkühler, J.; De Tillieux, P.; Knorr, R.L.; Lipowsky, R.; Dimova, R. Charged Giant Unilamellar Vesicles Prepared by Electroformation Exhibit Nanotubes and Transbilayer Lipid Asymmetry. Sci. Rep. 2018, 8, 11838. [Google Scholar] [CrossRef] [PubMed]
- Gu, T.; Lu, A.; Wang, X.; Brahan, N.; Xu, L.; Zhang, L.; Su, K.; Seow, K.; Vu, J.; Luk, C.; et al. Synthesis and Evaluation of Carmofur Analogs as Antiproliferative Agents, Inhibitors to the Main Protease (Mpro) of SARS-CoV-2, and Membrane Rupture-Inducing Agents. Discov. Chem. 2025, 2, 73. [Google Scholar] [CrossRef]
- Nishiyama, M.; Takagami, S.; Kim, R.; Kirihara, Y.; Saeki, T.; Jinushi, K.; Niimoto, M.; Hattori, T. Inhibition of Thymidylate Synthetase and Antiproliferative Effect by 1-Hexylcarbamoyl-5-Fluorouracil. Gan Kagaku Ryoho Cancer Chemother. 1988, 15, 3109–3113. [Google Scholar]
- Islam, M.M.; Mirza, S.P. Versatile Use of Carmofur: A Comprehensive Review of Its Chemistry and Pharmacology. Drug Dev. Res. 2022, 83, 1505–1518. [Google Scholar] [CrossRef]
- Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B.; et al. Fiji: An Open-Source Platform for Biological-Image Analysis. Nat. Methods 2012, 9, 676–682. [Google Scholar] [CrossRef]
- Sych, T.; Schubert, T.; Vauchelles, R.; Madl, J.; Omidvar, R.; Thuenauer, R.; Richert, L.; Mély, Y.; Römer, W. GUV-AP: Multifunctional FIJI-Based Tool for Quantitative Image Analysis of Giant Unilamellar Vesicles. Bioinformatics 2019, 35, 2340–2342. [Google Scholar] [CrossRef]
- Lee, I.-H.; Passaro, S.; Ozturk, S.; Ureña, J.; Wang, W. Intelligent Fluorescence Image Analysis of Giant Unilamellar Vesicles Using Convolutional Neural Network. BMC Bioinform. 2022, 23, 48. [Google Scholar] [CrossRef]
- Husen, P.; Arriaga, L.R.; Monroy, F.; Ipsen, J.H.; Bagatolli, L.A. Morphometric Image Analysis of Giant Vesicles: A New Tool for Quantitative Thermodynamics Studies of Phase Separation in Lipid Membranes. Biophys. J. 2012, 103, 2304–2310. [Google Scholar] [CrossRef]
- Hermann, E.; Bleicken, S.; Subburaj, Y.; García-Sáez, A.J. Automated Analysis of Giant Unilamellar Vesicles Using Circular Hough Transformation. Bioinformatics 2014, 30, 1747–1754. [Google Scholar] [CrossRef]
- Leomil, F.S.C.; Zoccoler, M.; Dimova, R.; Riske, K.A. PoET: Automated Approach for Measuring Pore Edge Tension in Giant Unilamellar Vesicles. Bioinform. Adv. 2021, 1, vbab037. [Google Scholar] [CrossRef] [PubMed]
- van Buren, L.; Koenderink, G.H.; Martinez-Torres, C. DisGUVery: A Versatile Open-Source Software for High-Throughput Image Analysis of Giant Unilamellar Vesicles. ACS Synth. Biol. 2023, 12, 120–135. [Google Scholar] [CrossRef] [PubMed]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; IEEE: New York, NY, USA; pp. 779–788. [Google Scholar]
- Dreher, Y.; Niessner, J.; Fink, A.; Göpfrich, K. GeoV: An Open-Source Software Package for Quantitative Image Analysis of 3D Vesicle Morphologies. Adv. Intell. Syst. 2023, 5, 2300170. [Google Scholar] [CrossRef]
- Wang, X.; Vu, J.; Luk, C.; Njoo, E. Benchtop 19F Nuclear Magnetic Resonance Spectroscopy Enabled Kinetic Studies and Optimization of the Synthesis of Carmofur. Can. J. Chem. 2023, 101, 518–524. [Google Scholar] [CrossRef]
- Angelova, M.I.; Dimitrov, D.S. Liposome Electroformation. Faraday Discuss. Chem. Soc. 1986, 81, 303. [Google Scholar] [CrossRef]
- Weinberger, A.; Tsai, F.-C.; Koenderink, G.H.; Schmidt, T.F.; Itri, R.; Meier, W.; Schmatko, T.; Schröder, A.; Marques, C. Gel-Assisted Formation of Giant Unilamellar Vesicles. Biophys. J. 2013, 105, 154–164. [Google Scholar] [CrossRef]
- Reeves, J.P.; Dowben, R.M. Formation and Properties of Thin-Walled Phospholipid Vesicles. J. Cell Physiol. 1969, 73, 49–60. [Google Scholar] [CrossRef]
- Pazzi, J.; Subramaniam, A.B. Nanoscale Curvature Promotes High Yield Spontaneous Formation of Cell-Mimetic Giant Vesicles on Nanocellulose Paper. ACS Appl. Mater. Interfaces 2020, 12, 56549–56561. [Google Scholar] [CrossRef]





| Method | Objective | Microscope | Camera/Detector | Run Time | Accuracy |
|---|---|---|---|---|---|
| YOLOv11 | 5× air | Zeiss Axiovert 200 Fluorescence Microscope | Sony Nex-6 digital camera | ≈10 s per image | 92 ± 6% |
| DisGUVery [43] | 100× oil | Nikon Ti Eclipse Fluorescence Microscope | Digital CMOS camera (Orca Flash 4.0) | ≈10 s per image | 65 ± 13% |
| Watershed [50] | 10× air | Zeiss Confocal LSM 880 | Gallium (GaAsP) photomultiplier tube | ≈30 s per image | 52 ± 11% |
| GUV-AP [38] | 60× oil | Nikon Eclipse Ti-E A1R Confocal LSM | Gallium (GaAsP) photomultiplier tube | Incompatible: Requires higher resolution images | |
| GeoV [45] | 63× oil | Zeiss Confocal LSM 880 | Gallium (GaAsP) photomultiplier tube | Incompatible: Requires higher resolution images | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, L.; Devendiran, D.; Gard, J.; Gu, T.; Guan, A.; Yamamoto, A.; Sarkar, T.J.; Njoo, E.; Pazzi, J. Large-Scale Fluorescence Microscopy Analysis of Lipid Membrane Conformational Changes Optimized and Enabled by an AI-Guided Image Detection Method. J. Exp. Theor. Anal. 2026, 4, 3. https://doi.org/10.3390/jeta4010003
Chang L, Devendiran D, Gard J, Gu T, Guan A, Yamamoto A, Sarkar TJ, Njoo E, Pazzi J. Large-Scale Fluorescence Microscopy Analysis of Lipid Membrane Conformational Changes Optimized and Enabled by an AI-Guided Image Detection Method. Journal of Experimental and Theoretical Analyses. 2026; 4(1):3. https://doi.org/10.3390/jeta4010003
Chicago/Turabian StyleChang, Lillian, Diya Devendiran, Julian Gard, Tiffany Gu, Annie Guan, Akira Yamamoto, Tapash Jay Sarkar, Edward Njoo, and Joseph Pazzi. 2026. "Large-Scale Fluorescence Microscopy Analysis of Lipid Membrane Conformational Changes Optimized and Enabled by an AI-Guided Image Detection Method" Journal of Experimental and Theoretical Analyses 4, no. 1: 3. https://doi.org/10.3390/jeta4010003
APA StyleChang, L., Devendiran, D., Gard, J., Gu, T., Guan, A., Yamamoto, A., Sarkar, T. J., Njoo, E., & Pazzi, J. (2026). Large-Scale Fluorescence Microscopy Analysis of Lipid Membrane Conformational Changes Optimized and Enabled by an AI-Guided Image Detection Method. Journal of Experimental and Theoretical Analyses, 4(1), 3. https://doi.org/10.3390/jeta4010003

