Using Low-Cost Sensing Technology to Assess Ambient and Indoor Fine Particulate Matter Concentrations in New York during the COVID-19 Lockdown
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites
2.2. Suitability of AirBeam2 for PM2.5 Air Quality Monitoring
3. Results
3.1. Comparison of PM2.5 Levels in 2020, 2021, and 2022
3.2. Comparison of PM2.5 Levels by Season
4. Discussion
4.1. Temporal Variations of Indoor PM2.5 Levels
4.2. Temporal Variations of Outdoor PM2.5
4.3. Seasonal Variations of Indoor PM2.5
4.4. Seasonal Variations of Outdoor PM2.5
4.5. Health Implications of Higher Indoor PM2.5 Levels during COVID-19
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Caiazzo, F.; Ashok, A.; Waitz, I.A.; Dong, G.H.; Barrett, S.F. Air pollution and early deaths in the United States. Part I: Quantifying the impact of major sectors in 2005. Atmos. Environ. 2013, 79, 198–208. [Google Scholar] [CrossRef]
- NIEHS. Air Pollution. National Institute of Environmental Health Science. 2018. Available online: https://www.niehs.nih.gov/health/topics/agents/air-pollution/index.cfm (accessed on 14 March 2023).
- Manisalidis, I.; Stavropoulou, E.; Stavropoulos, A.; Bezirtzoglou, E. Environmental and Health Impacts of Air Pollution: A Review. Front. Public Health 2020, 8, 14. [Google Scholar] [CrossRef] [PubMed]
- US EPA. Particulate Matter (PM). US EPA. 2022. Available online: https://www.epa.gov/pm-pollution/particulate-matter-pm-basics (accessed on 13 February 2023).
- Jones, E.; Laurent, J.G.C.; Young, A.S.; MacNaughton, P.; Coull, B.A.; Spengler, J.D.; Allen, J.G. The effects of ventilation and filtration on indoor PM2.5 in office buildings in four countries. Build. Environ. 2021, 200, 107975. [Google Scholar] [CrossRef] [PubMed]
- Sohrabi, C.; Alsafi, Z.; O’Neill, N.; Khan, M.; Kerwan, A.; Al-Jabir, A.; Iosifidis, C.; Agha, R. World Health Organization declares global emergency: A review of the 2019 novel coronavirus (COVID-19). Int. J. Surg. 2020, 76, 71–76. [Google Scholar] [CrossRef] [PubMed]
- Roh, T.; Moreno-Rangel, A.; Baek, J.; Obeng, A.B.; Hasan, N.T.; Carrillo, G. Indoor Air Quality and Health Outcomes in Employees Working from Home during the COVID-19 Pandemic: A Pilot Study. Atmosphere 2021, 12, 1665. [Google Scholar] [CrossRef]
- Ferreira, A.; Barros, N. COVID-19 and Lockdown: The Potential Impact of Residential Indoor Air Quality on the Health of Teleworkers. Int. J. Environ. Res. Public Health 2022, 19, 6079. [Google Scholar] [CrossRef]
- Indoor Air Quality. US EPA. 2021. Available online: https://www.epa.gov/report-environment/indoor-air-quality (accessed on 6 December 2022).
- Domínguez-Amarillo, S.; Fernández-Agüera, J.; García, S.C.; González-Lezcano, R.A. Bad Air Can Also Kill: Residential Indoor Air Quality and Pollutant Exposure Risk during the COVID-19 Crisis. Int. J. Environ. Res. Public Health 2020, 17, 7183. [Google Scholar] [CrossRef]
- Pala, D.; Casella, V.; Larizza, C.; Malovini, A.; Bellazzi, R. Impact of COVID-19 lockdown on PM concentrations in an Italian Northern City: A year-by-year assessment. PLoS ONE 2022, 17, e0263265. [Google Scholar] [CrossRef]
- Kyung, S.Y.; Kim, H.S. Particulate-Matter Related Respiratory Diseases. Tuberc. Respir. Dis. 2020, 83, 116. [Google Scholar] [CrossRef]
- Roberts-Semple, D.; Gao, Y. Evaluation of air pollution, local meteorology and urban public health. Int. J. Environ. Technol. Manag. 2013, 16, 160. [Google Scholar] [CrossRef]
- Wu, X.; Nethery, R.C.; Sabath, M.B.; Braun, D.; Dominici, F. Exposure to air pollution and COVID-19 mortality in the United States: A nationwide cross-sectional study. medRxiv 2020. [Google Scholar] [CrossRef]
- Akteruzzaman, M.; Rahman, M.A.; Rabbi, F.M.; Asharof, S.; Rofi, M.M.; Hasan, M.K.; Islam, M.A.M.; Khan, M.A.R.; Rahman, M.M.; Rahaman, M.H. The impacts of cooking and indoor air quality assessment in the southwestern region of Bangladesh. Heliyon 2023, 9, e12852. [Google Scholar] [CrossRef]
- World Health Organization: WHO. Household Air Pollution. 28 November 2022. Available online: https://www.who.int/news-room/fact-sheets/detail/household-air-pollution-and-health (accessed on 11 January 2023).
- Bergmans, B.; Cattaneo, A.; Duarte, R.M.B.O.; Gomes, J.F.; Saraga, D.; Ródenas García, M.; Querol, X.; Liotta, L.F.; Safell, J.; Spinazzé, A.; et al. Particulate matter indoors: A strategy to sample and monitor size-selective fractions. Appl. Spectrosc. Rev. 2022, 57, 675–704. [Google Scholar] [CrossRef]
- Marć, M.; Śmiełowska, M.; Namieśnik, J.; Zabiegała, B. Indoor air quality of everyday use spaces dedicated to specific purposes—A review. Environ. Sci. Pollut. Res. 2018, 25, 2065–2082. [Google Scholar] [CrossRef] [PubMed]
- Hao, J.; Li, X.; Zhao, Y.P. Indoor Air Pollution and Its Control in China. In Indoor Air Pollution; Springer: Berlin/Heidelberg, Germany, 2014; pp. 145–170. [Google Scholar] [CrossRef]
- Mansor, A.A.; Hisham, A.N.B.; Abdullah, S.; Napi, N.N.L.M.; Ahmed, A.; Ismail, M. Indoor-Outdoor Air Quality Assessment in Nurseries. IOP Conf. Ser. Earth Environ. Sci. 2020, 616, 012001. [Google Scholar] [CrossRef]
- Us Epa, O. Download Daily Data. 2016. Available online: https://www.epa.gov/outdoor-air-quality-data/download-daily-data (accessed on 17 April 2023).
- HabitatMap. Available online: https://www.habitatmap.org/airbeam/how-it-works (accessed on 24 May 2023).
- Ryder, O.; Minor, H.; Brown, S.; Duvall, R.; Clements, A.; Freed, R. AirBeam2 Quick Start Guide. Los Angeles Public Library Air Sensor Loan Program, Funded by U.S. EPA. 2020. Available online: https://cfpub.epa.gov/si/si_public_record_report.cfm?Lab=CEMM&dirEntryId=350603 (accessed on 9 March 2023).
- Gao, S.S.; Hilts, R.W.; Ross, M.K.; Styler, S.A. Particulate matters: Student-led air quality research in the third-year environmental chemistry classroom and the field. Anal. Bioanal. Chem. 2018, 410, 3223–3229. [Google Scholar] [CrossRef]
- Kortoçi, P.; Motlagh, N.H.; Zaidan, M.A.; Fung, P.L.; Varjonen, S.; Rebeiro-Hargrave, A.; Niemi, J.V.; Nurmi, P.; Hussein, T.; Petäjä, T.; et al. Air pollution exposure monitoring using portable low-cost air quality sensors. Smart Health 2022, 23, 100241. [Google Scholar] [CrossRef]
- Hegde, S.; Min, K.T.; Moore, J.E.; Lundrigan, P.; Patwari, N.; Collingwood, S.; Balch, A.; Kelly, K.E. Indoor Household Particulate Matter Measurements Using a Network of Low-cost Sensors. Aerosol Air Qual. Res. 2020, 20, 381–394. [Google Scholar] [CrossRef]
- Weschler, C.J. Changes in indoor pollutants since the 1950s. Atmos. Environ. 2009, 43, 153–169. [Google Scholar] [CrossRef]
- Kaunelienė, V.; Prasauskas, T.; Krugly, E.; Stasiulaitienė, I.; Čiužas, D.; Šeduikytė, L.; Martuzevičius, D. Indoor air quality in low energy residential buildings in Lithuania. Build. Environ. 2016, 108, 63–72. [Google Scholar] [CrossRef]
- Xu, R.; Qi, X.; Dai, G.; Lin, H.; Zhai, P.; Zhu, C.; Wang, L.; Ding, A. A Comparison Study of Indoor and Outdoor Air Quality in Nanjing, China. Aerosol Air Qual. Res. 2020, 20, 2128–2141. [Google Scholar] [CrossRef]
- Jiang, J.; Ding, X.; Isaacson, K.P.; Tasoglou, A.; Huber, H.; Shah, A.D.; Jung, N.; Boor, B.E. Ethanol-based disinfectant sprays drive rapid changes in the chemical composition of indoor air in residential buildings. J. Hazard. Mater. Lett. 2021, 2, 100042. [Google Scholar] [CrossRef]
- Cao, Z.; Wang, Y.; Wang, M. A comparison of concentrated contaminant removal in enclosure by using mixing ventilation and vortex ventilation. In Proceedings of the International Conference on Building Energy & Environment, Melbourne, Australia, 5–9 February 2018; pp. 139–143. [Google Scholar]
- Gruenwald, T.; Seals, B.A.; Knibbs, L.D.; Hosgood, H.D. Population Attributable Fraction of Gas Stoves and Childhood Asthma in the United States. Int. J. Environ. Res. Public Health 2022, 20, 75. [Google Scholar] [CrossRef] [PubMed]
- Bo, M.; Salizzoni, P.; Clerico, M.; Buccolieri, R. Assessment of Indoor-Outdoor Particulate Matter Air Pollution: A Review. Atmosphere 2017, 8, 136. [Google Scholar] [CrossRef]
- Li, J.; Tartarini, F. Changes in Air Quality during the COVID-19 Lockdown in Singapore and Associations with Human Mobility Trends. Aerosol Air Qual. Res. 2020, 20, 1748–1758. [Google Scholar] [CrossRef]
- Zhang, Z.; Arshad, A.; Zhang, C.; Hussain, S.; Li, W. Unprecedented Temporary Reduction in Global Air Pollution Associated with COVID-19 Forced Confinement: A Continental and City Scale Analysis. Remote Sens. 2020, 12, 2420. [Google Scholar] [CrossRef]
- Massey, D.B.; Kulshrestha, A.; Masih, J.; Taneja, A. Seasonal trends of PM10, PM5.0, PM2.5 & PM1.0 in indoor and outdoor environments of residential homes located in North-Central India. Build. Environ. 2012, 47, 223–231. [Google Scholar] [CrossRef]
- Li, H.; Guo, B.; Han, M.; Tian, M.; Zhang, J. Particulate matters pollution characteristic and the correlation between PM (PM 2.5, PM 10) and meteorological factors during the summer in Shijiazhuang. J. Environ. Prot. 2015, 6, 457. [Google Scholar] [CrossRef]
- Hernandez, G. Temperature and Humidity Effects on Particulate Matter Concentrations in a Sub-Tropical Climate during Winter. 2017. Available online: https://www.semanticscholar.org/paper/Temperature-and-humidity-effects-on-particulate-in-Hernandez-Berry/e2d8748fa838f69fa8554ea6f3e0fcc3fbd13c9b (accessed on 22 February 2023).
- Li, L.; Li, Q.X.; Huang, L.; Wang, Q.; Zhu, A.; Xu, J.; Liu, Z.; Li, H.; Shi, L.; Li, R.; et al. Air quality changes during the COVID-19 lockdown over the Yangtze River Delta Region: An insight into the impact of human activity pattern changes on air pollution variation. Sci. Total Environ. 2020, 732, 139282. [Google Scholar] [CrossRef]
- Clements, N.; Keady, P.; Emerson, J.; Fierer, N.; Miller, S. Seasonal variability of airborne particulate matter and bacterial concentrations in Colorado homes. Atmosphere 2018, 9, 133. [Google Scholar] [CrossRef]
- Sarmadi, M.; Rahimi, S.; Rezaei, M.; Sanaei, D.; Dianatinasab, M. Air quality index variation before and after the onset of COVID-19 pandemic: A comprehensive study on 87 capital, industrial and polluted cities of the world. Environ. Sci. Eur. 2021, 33, 134. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.; Kong, S.; Zheng, H.; Zeng, X.; Chen, N.; Qi, S. Real-time Source Apportionment of PM2.5 and Potential Geographic Origins of Each Source During Winter in Wuhan. Huan Jing Ke Xue=Huanjing Kexue 2022, 43, 61–73. [Google Scholar] [CrossRef] [PubMed]
- Comunian, S.O.; Dongo, D.; Milani, C.; Palestini, P. Air Pollution and COVID-19: The Role of Particulate Matter in the Spread and Increase of COVID-19’s Morbidity and Mortality. Int. J. Environ. Res. Public Health 2020, 17, 4487. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.K.; Balyan, P. Air pollution and COVID-19: Is the connect worth its weight? Indian J. Public Health 2020, 64, 132–134. [Google Scholar] [CrossRef] [PubMed]
- Shao, L.; Wang, Y.; Jones, T.; Santosh, M.; Silva, L.F.; Ge, S.; da Boit, K.; Feng, X.; Zhang, M.; BéruBé, K. COVID-19 mortality and exposure to airborne PM2.5: A lag time correlation. Sci. Total Environ. 2022, 806, 151286. [Google Scholar] [CrossRef]
- Tung, N.H.; Cheng, P.W.; Chi, K.H.; Hsiao, T.C.; Jones, T.; BéruBé, K.; Ho, K.F.; Chuang, H.C. Particulate matter and SARS-CoV-2: A possible model of COVID-19 transmission. Sci. Total Environ. 2021, 750, 141532. [Google Scholar] [CrossRef]
Stage of Pandemic | Phase II Lockdown Fall | Phase II Lockdown Fall | Phase II Lockdown Fall | Phase III Lockdown Winter | Phase III Lockdown Winter | Phase IV Reopening Fall | Phase IV Reopening Fall |
---|---|---|---|---|---|---|---|
Month/Year | Oct 2020 | Oct 2020 | Nov 2020 | Feb 2021 | Feb 2021 | Sep–Nov 2022 | Sept–Nov 2022 |
Location | Home 3 | Home 4 | Home 5 | Home 1 | Home 2 | Home 6 | Home 7 |
Indoor Site description and activities | Living Rm area under construction | Living Rm & basement: steam-generated & water heater (Mixed places) | Enclosed kitchen area: cooking, lit candles & cigarette smoking | Living Rm area: closed windows, no ventilation | Enclosed kitchen: no ventilation | In kitchen | In kitchen |
Indoor Sampling duration (days) | 6 | 7 | 7 | 27 | 14 | 12 | 18 |
Outdoor Site description and activities | Backyard | Backyard | Near golf course, Garden City Country Club | Facing busy road | Near road, low vehicular traffic | Front yard | Front yard |
Outdoor Sampling duration (days) | 9 | 4 | 7 | 27 | 14 | 10 | 18 |
2020 (Fall) Mean (µg/m3) (SE) | 2021 (Winter) Mean (µg/m3) (SE) | 2022 (Fall) Mean (µg/m3) (SE) | p-Value | |
---|---|---|---|---|
Indoor | 13.33 (4.63) | 9.0 (5.0) | 16.5 (7.5) | 0.93 |
Outdoor | 5.33 (1.20) | 8.0 (1.0) | 7.5 (0.5) | 0.65 |
City Ambient | 6.03 (1.24) | 6.5 (0.69) | 6.35 (0.05) | 0.11 |
Winter (n = 2) Mean (µg/m3) (SE) | Fall (n = 5) Mean (µg/m3) (SE) | p-Value | |
---|---|---|---|
Indoor | 9.0 (5) | 14.6 (3.5) | 0.42 |
Outdoor | 8.0 (1.0) | 6.2 (0.69) | 0.29 |
City Ambient | 6.5 (0.98) | 6.16 (0.68) | 0.78 |
Homes | Season | InAv PM2.5 (µg/m3) | OutAv PM2.5 (µg/m3) | City Ambient (µg/m3) |
---|---|---|---|---|
1 | 2021 (W) | 4 | 7 | 5.8 |
2 | 2021 (W) | 14 | 9 | 7.2 |
3 | 2020 (F) | 14 | 7 | 3.9 |
4 | 2020 (F) | 5 | 3 | 8.2 |
5 | 2020 (F) | 21 | 6 | 6.0 |
6 | 2022 (F) | 24 | 7 | 6.4 |
7 | 2022 (F) | 9 | 8 | 6.3 |
Mean (Std Error) | 13.0 (2.87) | 6.71 (0.71) | 6.25 (0.50) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Holder, J.; Jordan, J.; Johnson, K.; Akinremi, A.; Roberts-Semple, D. Using Low-Cost Sensing Technology to Assess Ambient and Indoor Fine Particulate Matter Concentrations in New York during the COVID-19 Lockdown. Air 2023, 1, 196-206. https://doi.org/10.3390/air1030015
Holder J, Jordan J, Johnson K, Akinremi A, Roberts-Semple D. Using Low-Cost Sensing Technology to Assess Ambient and Indoor Fine Particulate Matter Concentrations in New York during the COVID-19 Lockdown. Air. 2023; 1(3):196-206. https://doi.org/10.3390/air1030015
Chicago/Turabian StyleHolder, Justin, Jamelia Jordan, Kera Johnson, Ayodele Akinremi, and Dawn Roberts-Semple. 2023. "Using Low-Cost Sensing Technology to Assess Ambient and Indoor Fine Particulate Matter Concentrations in New York during the COVID-19 Lockdown" Air 1, no. 3: 196-206. https://doi.org/10.3390/air1030015
APA StyleHolder, J., Jordan, J., Johnson, K., Akinremi, A., & Roberts-Semple, D. (2023). Using Low-Cost Sensing Technology to Assess Ambient and Indoor Fine Particulate Matter Concentrations in New York during the COVID-19 Lockdown. Air, 1(3), 196-206. https://doi.org/10.3390/air1030015