A Case Study of Air Quality and a Health Index over a Port, an Urban and a High-Traffic Location in Rhodes City
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Comparing Air Quality and AQHI in Three Different Areas in Rhodes City
3.2. The Impact of Meteorology and Atmospheric Circulation on the Air Quality and AQHI in Rhodes City
4. Conclusions
- The air quality is more degraded in the city center (MS1) area, compared to port (MS2) and urban (MS3) areas. The concentration of () in the MS1 area is increased by about 78% (76%) with reference to the concentration of () in MS3. The common analysis for the MS2 shows that the concentration of () is increased by about 55% (80%) compared to MS3. These points highlight the importance of vehicle traffic and anthropogenic activities for the air quality in Rhodes city.
- The highest health risk (in terms of Air Quality Health Index; AQHI) is shown over the city center (MS1) area. The calculation of the daily mean values of AQHI are classified via Low to Moderate health risk classes. AQHI, over MS2 and MS3, shows lower health risks (improved conditions) compared to MS1. The pollution level in MS1, compared to MS3, causes higher AQHI values ranging from 1.0 to 3.0 (a relative increase by about 48%) and the MS2, compared to MS3 which shows higher AQHI values varying from 0.5 to 2.0 (a relative increase by about 43%), respectively.
- The hourly variability of traffic and anthropogenic activities seem to affect the diurnal variation of pollutants. The concentration of increases during the day (from morning to late evening hours). and appear to follow a typical hourly variation due to atmospheric chemistry and local emissions.
- The meteorological conditions over the southeastern Aegean seem to affect the variation and level of pollution in Rhodes city. The wind pattern over southeastern Aegean affects the variation and level of pollution. Wind speed tends to reduce the pollutants concentrations (not statistically significant in all cases). Additionally, wind direction seems to affect the concentration of pollutants. South sector winds are associated with the increased concentration of over the studied areas. Possibly, the large atmospheric circulation contributes to the level of in the city of Rhodes via the transfer of African dust during a dust episode that affects the southeastern Aegean Sea. The episode occurred during the period from 18 to 21 November, 2022. Moreover, the height of the boundary layer seems to affect the air quality in the city. Results show that the increase of the boundary layer is related to the reduced concentration of pollutants. The temperature and relative humidity show moderate (positive) correlation with concentrations in all studied areas (MS1, MS2 and MS3). Finally, the analysis indicates that the air quality in the city of Rhodes is affected by vehicle traffic, anthropogenic activities and meteorological conditions.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Landrigan, P.J.; Fuller, R. Global health and environmental pollution. Int. J. Public Health 2015, 60, 761–762. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abas, A.; Asnawi, N.H.; Aiyub, K.; Awang, A.; Abdullah, S.R. Lichen Biodiversity Index (LBI) for the Assessment of Air Quality in an Industrial City in Pahang, Malaysia. Atmosphere 2022, 13, 1905. [Google Scholar] [CrossRef]
- Nastos, P.T. Weather, Ambient Air Pollution and Bronchial Asthma in Athens, Greece. In Seasonal Forecasts, Climatic Change and Human Health; Thomson, M.C., GarciaHerrera, R., Beniston, M., Eds.; Advances in Global Change Research; Springer: Dordrecht, The Netherlands, 2008; Volume 30. [Google Scholar] [CrossRef]
- Monforte, P.; Ragusa, M.A. Evaluation of the air pollution in a Mediterranean region by the air quality index. Environ. Monit. Assess. 2018, 190, 625. [Google Scholar] [CrossRef] [PubMed]
- Lovett, G.M.; Tear, T.H.; Evers, D.C.; Findlay, S.E.G.; Cosby, B.J.; Dunscomb, J.K.; Driscoll, C.T.; Weathers, K.C. Effects of Air Pollution on Ecosystems and Biological Diversity in the Eastern United States. Ann. N. Y. Acad. Sci. 2009, 1162, 99–135. [Google Scholar] [CrossRef] [PubMed]
- Etim, E.U. Air pollution emission inventory along a major traffic route within Ibadan Metropolis, southwestern Nigeria. Afr. J. Environ. Sci. Technol. 2016, 10, 432–438. [Google Scholar] [CrossRef] [Green Version]
- von Schneidemesser, E.; Steinmar, K.; Weatherhead, E.C.; Bonn, B.; Gerwig, H.; Quedenau, J. Air pollution at human scales in an urban environment: Impact of local environment and vehicles on particle number concentrations. Sci. Total Environ. 2019, 688, 691–700. [Google Scholar] [CrossRef]
- Narayana, M.V.; Jalihal, D.; Nagendra, S.M.S. Establishing A Sustainable Low-Cost Air Quality Monitoring Setup: A Survey of the State-of-the-Art. Sensors 2022, 22, 394. [Google Scholar] [CrossRef]
- Ghosh, R.; Lurmann, F.; Perez, L.; Penfold, B.; Brandt, S.; Wilson, J.; Milet, M.; Künzli, N.; McConnell, R. Near-roadway air pollution and coronary heart disease: Burden of disease and potential impact of a greenhouse gas reduction strategy in southern California. Environ. Health Perspect. 2016, 124, 193–200. [Google Scholar] [CrossRef] [Green Version]
- Hegseth, M.N.; Oftedal, B.M.; Höper, A.C.; Aminoff, A.L.; Thomassen, M.R.; Svendsen, M.V.; Fell, A.K.M. Self-reported traffic-related air pollution and respiratory symptoms among adults in an area with modest levels of traffic. PLoS ONE 2019, 14, e0226221. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. WHO Global Air Quality Guidelines: Particulate Matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide. World Health Organization. 2021. Available online: https://apps.who.int/iris/handle/10665/345329 (accessed on 23 March 2023).
- World Health Organization. Regional Office for Europe & Joint WHO/Convention Task Force on the Health Aspects of Air Pollution. In Health Risks of Particulate Matter from Long-Range Transboundary Air Pollution; WHO Regional Office for Europe: Copenhagen, Denmark, 2006. Available online: https://apps.who.int/iris/handle/10665/107691 (accessed on 23 March 2023).
- IPCC. Special Report Global Warming of 1.5 °C. Available online: https://www.ipcc.ch/sr15/ (accessed on 10 March 2023).
- IPCC. Climate Change 2022: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Pörtner, H.-O., Roberts, D.C., Tignor, M., Poloczanska, E.S., Mintenbeck, K., Alegría, A., Craig, M., Langsdorf, S., Löschke, S., Möller, V., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2022; 3056p. [Google Scholar] [CrossRef]
- Sarmadi, M.; Rahimi, S.; Rezaei, M.; Sanaei, D.; Dianatinasab, M. Air quality index variation before and after the onset of COVID-19 pandemic: A comprehensive study on 87 capital, industrial and polluted cities of the world. Environ. Sci. Eur. 2021, 33, 134. [Google Scholar] [CrossRef]
- Chakraborty, P.; Jayachandran, S.; Padalkar, P.; Sitlhou, L.; Chakraborty, S.; Kar, R.; Bhaumik, S.; Srivastava, M. Exposure to nitrogen dioxide (NO2) from vehicular emission could increase the COVID-19 pandemic fatality in India: A perspective. Bull. Environ. Contam. Toxicol. 2020, 105, 198–204. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, S.S.; Phalkey, R.; Malik, A.A. A systematic review of air pollution as a risk factor for cardiovascular disease in South Asia: Limited evidence from India and Pakistan. Int. J. Hyg. Environ. Health 2014, 217, 133–144. [Google Scholar] [CrossRef] [PubMed]
- Rumana, H.S.; Sharma, R.C.; Beniwal, V.; Sharma, A.K. A retrospective approach to assess human health risks associated with growing air pollution in urbanized area of Thar Desert, Western Rajasthan, India. J. Environ. Health Sci. Eng. 2014, 12, 23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Orellano, P.; Quaranta, N.; Reynoso, J.; Balbi, B.; Vasquez, J. Effect of outdoor air pollution on asthma exacerbations in children and adults: Systematic review and multilevel meta-analysis. PLoS ONE 2017, 12, e0174050. [Google Scholar] [CrossRef] [PubMed]
- Vermaelen, K.; Brusselle, G. Exposing a deadly alliance: Novel insights into the biological links between COPD and lung cancer. Pulm. Pharmacol. Ther. 2013, 26, 544–554. [Google Scholar] [CrossRef]
- Kan, H.; Chen, B.; Zhao, N.; London, S.J.; Song, G.; Chen, G.; Zhang, Y.; Jiang, L.; HEI Health Review Committee. Part 1. A time-series study of ambient air pollution and daily mortality in Shanghai, China. Res. Rep. Health Eff. Inst. 2010, 154, 17–78. [Google Scholar]
- Kuula, J.; Timonen, H.; Niemi, J.V.; Manninen, H.E.; Rönkkö, T.; Hussein, T.; Fung, P.L.; Tarkoma, S.; Laakso, M.; Saukko, E.; et al. Opinion: Insights into updating Ambient Air Quality Directive 2008/50/EC. Atmos. Chem. Phys. 2022, 22, 4801–4808. [Google Scholar] [CrossRef]
- Juginović, A.; Vuković, M.; Aranza, I.; Biloš, V. Health impacts of air pollution exposure from 1990 to 2019 in 43 European countries. Sci. Rep. 2021, 11, 22516. [Google Scholar] [CrossRef]
- Reche, C.; Tobias, A.; Viana, M. Vehicular Traffic in Urban Areas: Health Burden and Influence of Sustainable Urban Planning and Mobility. Atmosphere 2022, 13, 598. [Google Scholar] [CrossRef]
- Deng, Y.; Li, J.; Li, Y.; Wu, R.; Xie, S. Characteristics of volatile organic compounds, NO2, and effects on ozone formation at a site with high ozone level in Chengdu. J. Environ. Sci. 2019, 75, 334–345. [Google Scholar] [CrossRef]
- Li, J.; Zhai, C.; Yu, J.; Liu, R.; Li, Y.; Zeng, L.; Xie, S. Spatiotemporal variations of ambient volatile organic compounds and their sources in Chongqing, a mountainous megacity in China. Sci. Total Environ. 2018, 627, 1442–1452. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Sun, J.; Liu, B.; Li, M.; Deng, Y.; Jing, W.; Yang, J. Factors Influencing O3 Concentration in Traffic and Urban Environments: A Case Study of Guangzhou City. Int. J. Environ. Res. Public Health 2022, 19, 12961. [Google Scholar] [CrossRef] [PubMed]
- Mazzuca, G.M.; Ren, X.; Loughner, C.P.; Estes, M.; Crawford, J.H.; Pickering, K.E.; Weinheimer, A.J.; Dickerson, R.R. Ozone production and its sensitivity to NOx and VOCs: Results from the DISCOVER-AQ field experiment, Houston 2013. Atmos. Chem. Phys. Discuss. 2016, 16, 14463–14474. [Google Scholar] [CrossRef] [Green Version]
- Mukherjee, A.; McCarthy, M.C.; Brown, S.G.; Huang, S.; Landsberg, K.; Eisinger, D.S. Influence of roadway emissions on near-road PM2.5: Monitoring data analysis and implications. Transp. Res. Part D Transp. Environ. 2020, 86, 102442. [Google Scholar] [CrossRef]
- Yanosky, J.D.; Fisher, J.; Liao, D.; Rim, D.; Wal, R.V.; Groves, W.; Puett, R.C. Application and validation of a line-source dispersion model to estimate small scale traffic-related particulate matter concentrations across the conterminous US. Air Qual. Atmos. Health 2018, 11, 741–754. [Google Scholar] [CrossRef]
- Doumbia, M.; Toure, N.E.; Silue, S.; Yoboue, V.; Diedhiou, A.; Hauhouot, C. Emissions from the Road Traffic of West African Cities: Assessment of Vehicle Fleet and Fuel Consumption. Energies 2018, 11, 2300. [Google Scholar] [CrossRef] [Green Version]
- McCarron, A.; Semple, S.; Braban, C.F.; Swanson, V.; Gillespie, C.; Price, H.D. Public engagement with air quality data: Using health behaviour change theory to support exposure-minimising behaviours. J. Expo. Sci. Environ. Epidemiol. 2022, 33, 321–331. [Google Scholar] [CrossRef] [PubMed]
- Cairncross, E.K.; John, J.; Zunckel, M. A novel air pollution index based on the relative risk of daily mortality associated with short-term exposure to common air pollutants. Atmos. Environ. 2007, 41, 8442–8454. [Google Scholar] [CrossRef]
- Ghorani-Azam, A.; Riahi-Zanjani, B.; Balali-Mood, M. Effects of air pollution on human health and practical measures for prevention in Iran. J. Res. Med. Sci. 2016, 21, 65. [Google Scholar] [CrossRef]
- Spyropoulos, G.C.; Nastos, P.T.; Moustris, K.P. Performance of Aether Low-Cost Sensor Device for Air Pollution Measurements in Urban Environments. Accuracy Evaluation Applying the Air Quality Index (AQI). Atmosphere 2021, 12, 1246. [Google Scholar] [CrossRef]
- Olstrup, H. An Air Quality Health Index (AQHI) with Different Health Outcomes Based on the Air Pollution Concentrations in Stockholm during the Period of 2015–2017. Atmosphere 2020, 11, 192. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Villeneuve, P.J.; Rowe, B.H.; Liu, L.; Stieb, D.M. The Air Quality Health Index as a predictor of emergency department visits for ischemic stroke in Edmonton, Canada. J. Expos. Sci. Environ. Epidemiol. 2014, 24, 358–364. [Google Scholar] [CrossRef] [PubMed]
- Szyszkowicz, M.A.; Kousha, T. Emergency department visits for asthma in relation to the Air Quality Health Index: A case-crossover study in Windsor, Canada. Can. J. Public Health 2014, 105, 336–341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yao, J.; Stieb, D.M.; Taylor, E.; Henderson, S.B. Assessment of the Air Quality Health Index (AQHI) and four alternate AQHI-Plus amendments for wildfire seasons in British Columbia. Can. J. Public Health 2020, 111, 96–106. [Google Scholar] [CrossRef] [PubMed]
- Logothetis, I.; Antonopoulou, C.; Sfetsioris, K.; Mitsotakis, A.; Grammelis, P. A Comparative Case Analysis of Meteorological and Air Pollution Parameters between a High and Low Port Activity Period in Igoumenitsa Port. Eng. Proc. 2021, 11, 33. [Google Scholar] [CrossRef]
- Logothetis, I.; Antonopoulou, C.; Sfetsioris, K.; Mitsotakis, A.; Grammelis, P. Comparison Analysis of the Effect of High and Low Port Activity Seasons on Air Quality in the Port of Heraklion. Environ. Sci. Proc. 2021, 8, 3. [Google Scholar]
- Shukla, J.; Misra, A.; Sundar, S.; Naresh, R. Effect of rain on removal of a gaseous pollutant and two different particulate matters from the atmosphere of a city. Math. Comput. Model. 2008, 48, 832–844. [Google Scholar] [CrossRef]
- Rizos, Κ.; Logothetis, Ι.; Koukouli, Μ.Ε.; Meleti, C.; Melas, D. The influence of the summer tropospheric circulation on the observed ozone mixing ratios at a coastal site in the Eastern Mediterranean. Atmos. Pollut. Res. 2022, 13, 101381. [Google Scholar] [CrossRef]
- Cichowicz, R.; Wielgosiński, G.; Fetter, W. Effect of wind speed on the level of particulate matter PM10 concentration in atmospheric air during winter season in vicinity of large combustion plant. J. Atmos. Chem. 2020, 77, 35–48. [Google Scholar] [CrossRef]
- Pateraki, S.; Asimakopoulos, D.N.; Flocas, H.A.; Maggos, T.; Vasilakos, C. The role of meteorology on different sized aerosol fractions (PM10, PM2.5, PM2.5–10). Sci. Total Environ. 2012, 419, 124–135. [Google Scholar] [CrossRef]
- Aldrin, M.; Haff, I.H. Generalised additive modelling of air pollution, traffic volume and meteorology. Atmos. Environ. 2005, 39, 2145–2155. [Google Scholar] [CrossRef]
- Chaloulakou, A.; Kassomenos, P.; Spyrellis, N.; Demokritou, P.; Koutrakis, P. Measurements of PM10 and PM2.5 particle concentrations in Athens, Greece. Atmos. Environ. 2003, 37, 649–660. [Google Scholar] [CrossRef]
- Su, T.; Li, Z.; Kahn, R. Relationships between the planetary boundary layer height and surface pollutants derived from lidar observations over China: Regional pattern and influencing factors. Atmos. Chem. Phys. 2018, 18, 15921–15935. [Google Scholar] [CrossRef] [Green Version]
- Emeis, S.; Schäfer, K. Remote sensing methods to investigate boundary-layer structures relevant to air pollution in cities. Bound.-Lay. Meteorol. 2006, 121, 377–385. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, Y.; Lu, J. Exploring the relationship between air pollution and meteorological conditions in China under environmental governance. Sci. Rep. 2020, 10, 14518. [Google Scholar] [CrossRef]
- Megaritis, A.G.; Fountoukis, C.; Charalampidis, P.E.; Denier van der Gon, H.A.C.; Pilinis, C.; Pandis, S.N. Linking climate and air quality over Europe: Effects of meteorology on PM2.5 concentrations. Atmos. Chem. Phys. 2014, 14, 10283–10298. [Google Scholar] [CrossRef] [Green Version]
- Cheng, B.; Ma, Y.; Feng, F.; Zhang, Y.; Shen, J.; Wang, H.; Guo, Y.; Cheng, Y. Influence of weather and air pollution on concentration change of PM2.5 using a generalized additive model and gradient boosting machine. Atmos. Environ. 2021, 255, 118437. [Google Scholar] [CrossRef]
- Zhang, L.; Cheng, Y.; Zhang, Y.; He, Y.; Gu, Z.; Yu, C. Impact of Air Humidity Fluctuation on the Rise of PM Mass Concentration Based on the High-Resolution Monitoring Data. Aerosol Air Qual. Res. 2017, 17, 543–552. [Google Scholar] [CrossRef] [Green Version]
- Cherchi, A.; Annamalai, H.; Masina, S.; Navarra, A. South Asian summer monsoon and the eastern Mediterranean climate: Themonsoon—Desert mechanism in CMIP5 simulations. J. Clim. 2014, 27, 6877–6903. [Google Scholar] [CrossRef] [Green Version]
- Logothetis, I.; Tourpali, K.; Misios, S.; Zanis, P. Etesians and the summer circulation over East Mediterranean in CoupledModel Intercomparison Project Phase 5 simulations: Connections to the Indian summer monsoon. Int. J. Climatol. 2020, 40, 1118–1131. [Google Scholar] [CrossRef]
- Giorgi, F. Climate change hot-spots. Geophys. Res. Lett. 2006, 33, L08707. [Google Scholar] [CrossRef]
- Jacobson, M.Z. Review of solutions to global warming, air pollution, and energy security. Energy Environ. Sci. 2009, 2, 148–173. [Google Scholar] [CrossRef]
- Tyrlis, E.; Lelieveld, J. Climatology and Dynamics of the Summer Etesian Winds over the Eastern Mediterranean. J. Atmos. Sci. 2013, 70, 3374–3396. [Google Scholar] [CrossRef]
- Mitsakou, C.; Kallos, G.; Papantoniou, N.; Spyrou, C.; Solomos, S.; Astitha, M.; Housiadas, C. Saharan dust levels in Greece and received inhalation doses. Atmos. Chem. Phys. 2008, 8, 7181–7192. [Google Scholar] [CrossRef] [Green Version]
- Kallos, G.; Astitha, M.; Katsafados, P.; Spyrou, C. Long-range transport of anthropogenically and naturally produced particulate matter in the Mediterranean and North Atlantic: Current state of knowledge. J. Appl. Meteorol. Clim. 2007, 46, 1230–1251. [Google Scholar] [CrossRef] [Green Version]
- Logothetis, I.; Antonopoulou, C.; Zisopoulos, G.; Mitsotakis, A.; Grammelis, P. The Impact of Climate Conditions and Traffic Emissions on the Pms Variations in Rhodes City during the Summer of 2021. In Proceedings of the 7th World Congress on Civil, Structural, and Environmental Engineering (CSEE’22), Virtual Conference, 10–12 April 2022. Paper No. ICEPTP 181. [Google Scholar] [CrossRef]
- Bai, L.; Huang, L.; Wang, Z.; Ying, Q.; Zheng, J.; Shi, X.; Hu, J. Long-term Field Evaluation of Low-cost Particulate Matter Sensors in Nanjing. Aerosol Air Q. Res. 2020, 20, 242–253. [Google Scholar] [CrossRef]
- Samad, A.; Obando Nuñez, D.R.; Solis Castillo, G.C.; Laquai, B.; Vogt, U. Effect of Relative Humidity and Air Temperature on the Results Obtained from Low-Cost Gas Sensors for Ambient Air Quality Measurements. Sensors 2020, 20, 5175. [Google Scholar] [CrossRef] [PubMed]
- Giordano, M.R.; Malings, C.; Pandis, S.N.; Presto, A.A.; McNeill, V.F.; Westervelt, D.M.; Beekmann, M.; Subramanian, R. From low-cost sensors to high-quality data: A summary of challenges and best practices for effectively calibrating low-cost particulate matter mass sensors. J. Aerosol Sci. 2021, 158, 105833. [Google Scholar] [CrossRef]
- Liang, L. Calibrating low-cost sensors for ambient air monitoring: Techniques, trends, and challenges. Environ. Res. 2021, 197, 111163. [Google Scholar] [CrossRef] [PubMed]
- deSouza, P.; Kahn, R.; Stockman, T.; Obermann, W.; Crawford, B.; Wang, A.; Crooks, J.; Li, J.; Kinney, P. Calibrating networks of low-cost air quality sensors. Atmos. Meas. Tech. 2022, 15, 6309–6328. [Google Scholar] [CrossRef]
- Williams, R.; Long, R.; Beaver, M.; Kaufman, A.; Zeiger, F.; Heimbinder, M.; Heng, I.; Yap, R.; Acharya, B.; Grinwald, B.; et al. Sensor Evaluation Report; EPA/600/R-14/143 (NTIS PB2015-100611); Office of Research and Development (8101R): Research Triangle Park, NC, USA; Washington, DC, USA, 2014. Available online: https://cfpub.epa.gov/si/si_public_record_report.cfm?Lab=NERL&dirEntryId=277270&simpleSearch=1&searchAll=sensor+evaluation+report (accessed on 15 April 2023).
- Achieng’, G.O.; Andala, D.M. Determination of Ambient air quality status through Assessment of particulate matter and selected gases. In Proceedings of the International Conference on Air Quality in Africa (ICAQ’Africa2022), Virtual, 11–14 October 2022. [Google Scholar]
- Environmental Devises Corporation. Haz-Scanner™ model HIM-6000. Available online: https://environmentaldevices.com/him-6000-2/ (accessed on 24 May 2023).
- Bencs, L.; Plósz, B.; Mmari, A.G.; Szoboszlai, N. Comparative Study on the Use of Some Low-Cost Optical Particulate Sensors for Rapid Assessment of Local Air Quality Changes. Atmosphere 2022, 13, 1218. [Google Scholar] [CrossRef]
- Wahlborg, D.; Björling, M.; Mattsson, M. Evaluation of field calibration methods and performance of AQMesh, a low-cost air quality monitor. Environ. Monit. Assess. 2021, 193, 251. [Google Scholar] [CrossRef] [PubMed]
- AQMesh Small Sensor Air Quality Monitoring System. Available online: https://www.aqmesh.com/products/aqmesh/ (accessed on 24 May 2023).
- Stieb, D.M.; Burnett, R.T.; Smith-Doiron, M.; Brion, O.; Shin, H.H.; Economou, V. A new multipollutant, no-threshold air quality health index based on short-term associations observed in daily time-series analyses. J. Air Waste Manag. Assoc. 2008, 58, 435–450. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilks, D.S. Statistical Methods in the Atmospheric Sciences; Academic Press: New York, NY, USA, 1995. [Google Scholar]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, L.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. QJRMeteorol Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Magnus, G. Versuche über die Spannkräfte des Wasserdampfs. Ann. Phys. 1844, 137, 225–247. [Google Scholar] [CrossRef] [Green Version]
- August, E.F. Ueber die Berechnung der Expansivkraft des Wasserdunstes. Ann. Phys. 1828, 89, 122–137. [Google Scholar] [CrossRef] [Green Version]
- Gibbins, C.J. A survey and comparison of relationships for the determination of the saturation vapour pressure over plane surfaces of pure water and of pure ice. Ann. Geophys. 1990, 8, 859–885. [Google Scholar]
- Alduchov, O.A.; Eskridge, R.E. Improved Magnus form approximation of saturation vapor pressure. J. Appl. Meteor. 1996, 35, 601–609. [Google Scholar] [CrossRef]
- Stephenson, D.B. Use of the “odds ratio” for diagnosing forecast skill. Weather Forecast. 2000, 15, 221–232. [Google Scholar] [CrossRef]
- Altman, D.G.; Bland, J.M. How to obtain the confidence interval from a P value. BMJ 2011, 342, d2090. [Google Scholar] [CrossRef] [Green Version]
- Basart, S.; Nickovic, S.; Terradellas, E.; Cuevas, E.; García-Pando, C.P.; García-Castrillo, G.; Werner, E.; Benincasa, F. The WMO SDS-WAS Regional Center for Northern Africa, Middle East and Europe. E3S Web Conf. 2019, 99, 04008. [Google Scholar] [CrossRef]
- Artíñano, B.; Salvador, P.; Alonso, D.G.; Quero, X.; Alastuey, A. Influence of traffic on the PM10 and PM2.5 urban aerosol fractions in Madrid (Spain). Sci. Total Environ. 2004, 334–335, 111–123. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.; Feng, Z.; Zhan, J.; Liu, Y.; Liu, P.; Liu, C.; Ma, Q.; Yang, K.; Wang, Y.; He, H. Influence of photochemical loss of volatile organic compounds on understanding ozone formation mechanism. Atmos. Chem. Phys. 2022, 22, 4841–4851. [Google Scholar] [CrossRef]
- Berezina, E.; Moiseenko, K.; Skorokhod, A.; Pankratova, N.V.; Belikov, I.; Belousov, V.; Elansky, N.F. Impact of VOCs and NOx on Ozone Formation in Moscow. Atmosphere 2020, 11, 1262. [Google Scholar] [CrossRef]
- Abelsohn, A.; Stieb, D.M. Health effects of outdoor air pollution: Approach to counseling patients using the Air Quality Health Index. Can. Fam. Phys. 2011, 57, 881–887. [Google Scholar]
- Gutenberg, S. Demystifying the air quality health index. Can. Pharm. J. 2014, 147, 332–334. [Google Scholar] [CrossRef] [Green Version]
- Manisalidis, Ι.; Stavropoulou, Ε.; Stavropoulos, A.; Bezirtzoglou, Ε. Environmental and Health Impacts of Air Pollution: A Review. Front. Public Health 2020, 8, 14. [Google Scholar] [CrossRef] [Green Version]
- Drakaki, E.; Dessinioti, C.; Antoniou, C.V. Air pollution and the skin. Front. Environ. Sci. 2014, 2, 11. [Google Scholar] [CrossRef] [Green Version]
- An, J.; Shi, Y.; Wang, J.; Zhu, B. Temporal Variations of O3 and NOx in the Urban Background Atmosphere of Nanjing, East China. Arch. Environ. Contam. Toxicol. 2016, 71, 224–234. [Google Scholar] [CrossRef]
- Dainius, J.; Vaida, V.; Renata, C.I.; Milda, P.I. Surface ozone concentration and its relationship with UV Radiation, Meteorological Parameters and Radon on the Eastern Coast of the Baltic Sea. Atmosphere 2016, 7, 27. [Google Scholar]
- Qin, Y.; Liu, M.; Song, J.; Yu, R.; Li, L.; Su, J. The temporal and spatial variation characteristics of near-surface O3 concentration in Guangdong-Hong Kong-Macao Greater Bay Area. J. Environ. Sci. 2021, 41, 2987–3000. [Google Scholar]
- Wang, P.; Zhang, R.; Sun, S.; Gao, M.; Zheng, B.; Zhang, D.; Zhang, Y.; Carmichael, G.R.; Zhang, H. Aggravated air pollution and health burden due to traffic congestion in urban China. Atmos. Chem. Phys. 2023, 23, 2983–2996. [Google Scholar] [CrossRef]
- Pancholi, P.; Kumar, A.; Bikundia, D.S.; Chourasiya, S. An observation of seasonal and diurnal behavior of O3–NOx relationships and local/regional oxidant (OX = O3 + NO2) levels at a semi-arid urban site of western India. Sustain. Environ. Res. 2018, 28, 79–89. [Google Scholar] [CrossRef]
- Juráň, S.; Šigut, L.; Holub, P.; Fares, S.; Klem, K.; Grace, J.; Urban, O. Ozone flux and ozone deposition in a mountain spruce forest are modulated by sky conditions. Sci. Total Environ. 2019, 672, 296–304. [Google Scholar] [CrossRef] [PubMed]
- Dang, R.; Liao, H.; Fu, Y. Quantifying the anthropogenic and meteorological influences on summertime surface ozone in China over 2012–2017. Sci. Total Environ. 2021, 754, 142394. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Unger, N.; Harper, K.; Heyes, C. Global climate and human health effects of the gasoline and diesel vehicle fleets. GeoHealth 2020, 4, e2019GH000240. [Google Scholar] [CrossRef] [Green Version]
- Requia, W.G.; Higgins, C.D.; Adams, M.D.; Mohamed, M.; Koutrakis, P. The health impacts of weekday traffic: A health risk assessment of PM2.5 emissions during congested periods. Environ. Int. 2018, 111, 164–176. [Google Scholar] [CrossRef]
- European Environment Agency. Air Quality in Europe—2019 Report; Publication Office of European Union, European Environment Agency Kongens Nytorv: Copenhagen, Denmark, 2019; 99p, ISBN 978-92-9480-088-6. [CrossRef]
- Chen, Z.; Huang, B.Z.; Sidell, M.A.; Chow, T.; Eckel, S.P.; Pavlovic, N.; Martinez, M.P.; Lurmann, F.; Thomas, D.C.; Gilliland, F.D.; et al. Near-roadway air pollution associated with COVID-19 severity and mortality—Multiethnic cohort study in Southern California. Environ. Int. 2021, 157, 106862. [Google Scholar] [CrossRef]
- Mendes, D.; Dantas, G.; André da Silva, M.; Guedes de Seixas, E.; Martins da Silva, C.; Arbilla, G. Impact of the Petrochemical Complex on the Air Quality of an Urban Area in the City of Rio de Janeiro, Brazil. Bull. Environ. Contam. Toxicol. 2020, 104, 438–443. [Google Scholar] [CrossRef]
- Kirešová, S.; Guzan, M. Determining the Correlation between Particulate Matter PM10 and Meteorological Factors. Eng 2022, 3, 343–363. [Google Scholar] [CrossRef]
- Yang, W.; Wang, G.; Bi, C. Analysis of Long-Range Transport Effects on PM2.5 during a Short Severe Haze in Beijing, China. Aerosol Air Qual. Res. 2017, 17, 1610–1622. [Google Scholar] [CrossRef]
- Jiang, B.; Sun, C.; Mu, S.; Zhao, Z.; Chen, Y.; Lin, Y.; Qiu, L.; Gao, T. Differences in Airborne Particulate Matter Concentration in Urban Green Spaces with Different Spatial Structures in Xi’an, China. Forests 2022, 13, 14. [Google Scholar] [CrossRef]
Health Risk | AQHI | Health Suggestions | |
---|---|---|---|
Sensitive Population | General Population | ||
Low | 1–3 | Enjoy your usual outdoor activities. | Ideal air quality for outdoor activities. |
Moderate | 4–6 | Consider reducing or rescheduling strenuous activities outdoors if you are experiencing symptoms. | No need to modify your usual outdoor activities unless you experience symptoms such as coughing and throat irritation. |
High | 7–10 | Reduce or reschedule strenuous activities outdoors. Children and the elderly should also take it easy. | Consider reducing or rescheduling strenuous activities outdoors if you experience symptoms such as coughing and throat irritation. |
Very High | >10 | Avoid strenuous activities outdoors. Children and the elderly should also avoid outdoor physical exertion. | Reduce or reschedule strenuous activities outdoors, especially if you experience symptoms such as coughing and throat irritation. |
Air Quality Station | Pollutant | WS | WDir | T | BL | RH |
---|---|---|---|---|---|---|
MS1 (city center Station) | −0.28 * | 0.35 * | 0.44 * | −0.58 * | 0.48 * | |
−0.21 | −0.16 | −0.14 | 0.12 | −0.20 | ||
−0.22 | 0.38 * | 0.22 | −0.46 * | 0.50 * | ||
AQHI | −0.31 | 0.27 * | 0.21 | −0.42 * | 0.36* | |
MS2 (Port Station) | −0.24 * | 0.33* | 0.39 * | −0.46 * | 0.46 * | |
−0.25 | −0.20 | −0.05 | 0.32 * | −0.36 | ||
0.33 * | −0.14 | −0.26 | 0.15 | 0.03 | ||
AQHI | 0.01 | −0.15 | −0.10 | 0.21 | −0.09 | |
MS3 (Urban Station) | −0.18 | 0.34 * | 0.40 * | −0.55 * | 0.42 * | |
0.22 | 0.30 | 0.40 * | 0.03 | 0.14 | ||
−0.17 | 0.45 * | 0.51 * | −0.32 * | 0.40 * | ||
AQHI | 0.10 | 0.52 * | 0.66 * | −0.25 | 0.41 * |
Air Quality Station | Pollutant | OR | CI (95%) (Lower–Upper) | p-Value |
---|---|---|---|---|
MS1 (city center Station) | 18.00 * | 2.23–145.72 | <0.01 | |
11.07 * | 3.14–39.08 | <0.01 | ||
5.74 * | 1.71–19.24 | <0.01 | ||
AQHI | 16.11 * | 4.23–60.57 | <0.01 | |
MS2 (Port Station) | 29.3 * | 6.82–126.76 | <0.01 | |
2.30 | 0.64–8.26 | 0.19 | ||
0.23 | 0.08–0.59 | <0.01 | ||
AQHI | 1.68 | 0.64–4.38 | 0.28 | |
MS3 (Urban Station) | 2.06 | 0.53–7.96 | 0.29 | |
0.19 | 0.07–0.52 | <0.01 | ||
2.08 | 0.98–8.17 | <0.01 | ||
AQHI | 0.17 | 0.05–0.56 | 0.03 |
Air Quality Station | Pollutant | OR | CI (95%) (Lower–Upper) | p-Value |
---|---|---|---|---|
MS1 (city center Station) | 8.9 * | 3.17–25.1 | <0.01 | |
0.18 | 0.07–0.55 | <0.01 | ||
8.59 * | 3.37–23.45 | <0.01 | ||
AQHI | 7.45 * | 3.41– 16.22 | <0.01 | |
MS2 (Port Station) | 10.81 * | 4.8–24.3 | <0.01 | |
2.36 | 0.15–38.20 | 0.55 | ||
0.56 | 0.27–1.15 | 0.11 | ||
AQHI | 0.32 | 0.12–0.73 | <0.01 | |
MS3 (Urban Station) | 2.43 * | 1.12–5.25 | 0.02 | |
3.41 * | 1.32–8.53 | <0.01 | ||
11.48 * | 4.55–29.61 | <0.01 | ||
AQHI | 3.2 * | 3.34–184.20 | <0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Logothetis, I.; Antonopoulou, C.; Zisopoulos, G.; Mitsotakis, A.; Grammelis, P. A Case Study of Air Quality and a Health Index over a Port, an Urban and a High-Traffic Location in Rhodes City. Air 2023, 1, 139-158. https://doi.org/10.3390/air1020011
Logothetis I, Antonopoulou C, Zisopoulos G, Mitsotakis A, Grammelis P. A Case Study of Air Quality and a Health Index over a Port, an Urban and a High-Traffic Location in Rhodes City. Air. 2023; 1(2):139-158. https://doi.org/10.3390/air1020011
Chicago/Turabian StyleLogothetis, Ioannis, Christina Antonopoulou, Georgios Zisopoulos, Adamantios Mitsotakis, and Panagiotis Grammelis. 2023. "A Case Study of Air Quality and a Health Index over a Port, an Urban and a High-Traffic Location in Rhodes City" Air 1, no. 2: 139-158. https://doi.org/10.3390/air1020011
APA StyleLogothetis, I., Antonopoulou, C., Zisopoulos, G., Mitsotakis, A., & Grammelis, P. (2023). A Case Study of Air Quality and a Health Index over a Port, an Urban and a High-Traffic Location in Rhodes City. Air, 1(2), 139-158. https://doi.org/10.3390/air1020011