Nutrient Characterization and Mineral Composition of Aruana in a Silvopastoral System with Nitrogen Fertilization
Abstract
:1. Introduction
2. Materials and Methods
2.1. Localization
2.2. Animals, Diets and Experimental Design
2.3. Measurement and Sampling Techniques
2.4. Chemical Analysis
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Poli, C.H.E.C.; Monteiro, A.L.G.; Devincenzi, T.; Albuquerque, F.H.M.A.R.D.; Motta, J.H.D.; Borges, L.I.; MUIR, J.P. Management Strategies for Lamb Production on Pasture-Based Systems in Subtropical Regions: A Review. Front. Vet. Sci. 2020, 7, 543. [Google Scholar] [CrossRef] [PubMed]
- Manno, M.C.; Rodrigues, L.F.D.S.; Lima, K.R.D.S.; Carvalhal, M.V.D.L.; Rodrigues, S.S.; Costa, G.L.D.; Barreto, A.D.N. Behavioral aspects of Santa Inês sheep kept in pasture in a tropical rainforest climate. Cienc. Rural 2019, 49, 1–8. [Google Scholar] [CrossRef]
- Bernardino, F.S.; Garcia, R. Sistemas silvipastoris. Pesq. Flor. Bras. 2009, 60, 77–87. [Google Scholar] [CrossRef]
- Paciullo, D.S.C.; Gomide, C.A.M.; Castro, C.R.T.; Maurício, R.M.; Fernandes, P.B.; Morenz, M.J.F. Morphogenesis, biomass and nutritive value of Panicum maximum under different shade levels and fertilizer nitrogen rates. Grass Forage Sci. 2017, 72, 590–600. [Google Scholar] [CrossRef]
- Gerdes, L.; Barbosa, C.M.P.; Giacomini, A.A.; Mattos, W.T.D.; Gimenes, F.M.D.A.; Batista, K.; Uzan, B.Z. Introduction of forage legumes into Aruana Guineagrass pasture. Bol. Indústria Anim. 2020, 77, 1–10. [Google Scholar] [CrossRef]
- Reps, N.I.F.A.; Baer, C. NC1182: Management and Environmental Factors Affecting Nitrogen Cycling and Use Efficiency in Forage-Based Livestock Production Systems. NCRA, Agricultural Economics, USA. 2023. Available online: https://www.nimss.org/projects/view/mrp/outline/18596 (accessed on 19 December 2023).
- Le Roux, E.; Kerley, G.I.H.; Cromsigt, J. Megaherbivores modify trophic cascades triggered by fear of predation in an African savanna ecosystem. Curr. Biol. 2018, 28, 2493–2499. [Google Scholar] [CrossRef] [PubMed]
- Veldhuis, M.P.; Gommers, M.I.; Olff, H.; Berg, M.P. Spatial redistribution of nutrients by large herbivores and dung beetles in a savanna ecosystem. J. Ecol. 2018, 106, 422–433. [Google Scholar] [CrossRef]
- Li, L.; Zhang, J.H.E.X.Z.; Hou, F. Different effects of sheep excrement type and supply level on plant and soil C: N: P stoichiometry in a typical steppe on the loess plateau. Plant Soil 2021, 462, 45–58. [Google Scholar] [CrossRef]
- De Sá Souza, M.; Jardim, A.M.D.R.F.; Júnior, G.D.N.A.; Silva, J.R.I.; Leite, M.L.D.M.V.; Teixeira, V.I.; Da Silva, T.G.F. Ciclagem de nutrientes em ecossistemas de pastagens tropicais. Pubvet 2018, 12, 1–9. [Google Scholar] [CrossRef]
- Empresa Brasileira de Pesquisa Agropecuária—EMBRAPA. Sistema Brasileiro de Classificação dos Solos, 1st ed.; EMBRAPA Solos: Rio de Janeiro, Brazil, 1999. [Google Scholar]
- Alvares, C.A.; Stape, J.L.; Sentelhas, P.C.; Gonçalves, J.L.M.; Sparovek, G. Koppen’s climate classification map for Brazil. Meteorol. Z. 2013, 22, 711–728. [Google Scholar] [CrossRef] [PubMed]
- Cipriani, H.N.; Salman, A.K.D.; Dos Passos, A.M.A.; Schmitt, E.; Cruz, P.C.; Botelho, F.J.E.; Moraes, K.K.S. Uma planilha Eletrônica Gratuita para Calcular a Sombra Projetada pelas Árvores. n. 145; EMBRAPA: Rio de Janeiro, Brazil, 2016. [Google Scholar]
- Wilm, H.G.; Costello, D.F.; Klipple, G.E. Estimating forage yield by the 11 double-sampling methods. Agron. J. 1994, 36, 194–203. [Google Scholar] [CrossRef]
- Mott, G.O.; Lucas, H.L. The design, conduct, and interpretation of grazing trials on cultivated and improved pastures. In Proceedings of the International Grassland Congress, State College, PA, USA, 17–23 August 1952. [Google Scholar]
- Association of Official Analytical Chemists—AOAC International. Official Methods of Analysis; The Association of Official Analytical Chemists: Gaithersburg, MD, USA, 2000. [Google Scholar]
- Silva, F.C. Manual de Análises Químicas de Solos, Plantas e Fertilizantes, 1st ed.; EMBRAPA: Rio de Janeiro, Brazil, 2009. [Google Scholar]
- Van Raij, B.; De Andrade, J.C.; Cantarella, H.; Quaggio, J.A. Análise Química para Avaliação da Fertilidade de Solos Tropicais, 1st ed.; Instituto Agronômico: Campinas, Brazil, 2001. [Google Scholar]
- Empresa Brasileira de Pesquisa Agropecuária—EMBRAPA. Serviço Nacional de Levantamento e Conservação de Solos; Manual de métodos de análises de solo; EMBRAPA: Rio de Janeiro, Brazil, 1979. [Google Scholar]
- Saraiva, F.P. Ciclagem de Nutrientes em Pastagens de Gramíneas Tropicais Manejadas sob Diferentes Intensidades de Pastejo. Master’s Thesis, Universidade Federal Rural de Pernambuco, Recife, Brazil, 2010. [Google Scholar]
- Sampaio, A.C.F.; Silva, E.S.; Júnior, J.F.V.; Silva, E.E.; Santos, B.R.; Oliveira, R.F. Granulometria e teores de carbono e nitrogênio em solo sob sistemas integrados de produção. Agropecuária Científica No Semiárido 2020, 16, 58–63. [Google Scholar] [CrossRef]
- Ayantunde, A.; Hiernaux, P.; Fernandez-Rivera, S.; Sangare, M. Improving the Profitability, Sustainability and Efficiency of Nutrients Through Site Specific Fertilizer Recommendations in West Africa Agro-Ecosystems. In Improving the Profitability, Sustainability and Efficiency of Nutrients through Site Specific Fertilizer Recommendations in West Africa Agro-Ecosystems; Springer: Cham, Switzerland, 2018; pp. 11–23. [Google Scholar] [CrossRef]
- NRC. Nutrient Requirements of Small Ruminants: Sheep, Goats, Cervids, and New World Camelids, 1st ed.; National Academy Press: Washington, DC, USA, 2007. [Google Scholar]
- Sacco, D.; Moretti, B.; Monaco, S.; Grignani, C. Six-year transition from conventional to organic farming: Effects on crop production and soil quality. Eur. J. Agron. 2015, 69, 10–20. [Google Scholar] [CrossRef]
- Matus, F.J.; Rodríguez, J. A simple model for estimating the contribution of nitrogen mineralization to the nitrogen supply of crops from a stabilized pool of soil organic matter and recent organic input. Plant Soil 1994, 162, 259–271. [Google Scholar] [CrossRef]
- Weand, M.P.; Arthur, M.A.; Lovett, G.M.; Sikora, F.; Weathers, K.C. The phosphorus status of northern hardwoods differs by species but is unaffected by nitrogen fertilization. Biogeochemistry 2010, 97, 159–181. [Google Scholar] [CrossRef]
- Paciullo, D.S.C.; Carvalho, C.A.B.; Aroeira, L.J.M.; Morenz, M.J.F.; Lopes, F.C.F.; Rossiello, R.O.P. Morfofisiologia e valor nutritivo do capimbraquiária sob sombreamento natural e a sol pleno. Pesq. Agropec. Bras. 2007, 42, 573–579. [Google Scholar] [CrossRef]
- Freitas, E.C.S.; Oliveira Neto, S.N.; Fonseca, D.M.; Santos, M.V.; Leite, H.G.; Machado, V.D. Deposição de serapilheira e de nutrientes no solo em sistema agrossilvipastoril com eucalipto e acácia. Rev. Árvore 2013, 37, 409–417. [Google Scholar] [CrossRef]
- Rodrigues, M.O.D. Caracterização e Composição Mineral do Capim Mombaça em Diferentes Condições de Pastejo, em Sistema de Integração Pastagem-Floresta. Master’s Thesis, Universidade Federal do Norte do Tocantins, Araguaína, Brazil, 2014. [Google Scholar]
Variable | Treatments | ||||
---|---|---|---|---|---|
Full Sun | Silvopastoral | ||||
Fertilization | Without Fertilization | Fertilization | Without Fertilization | Mean 6 | |
OM (g/dm3) 1 | 43.37 ± 2.92 | 46.23 ± 1.19 | 47.00 ± 0.72 | 45.33 ± 1.45 | 45.48 |
OM (kg/ha) 1 | 86.733 ± 5.842 | 92.466 ± 2.384 | 94.000 ± 1.442 | 90.666 ± 2.899 | 90.966 |
OC (g/dm3) 2 | 25.13 ± 1.71 | 26.83 ± 0.69 | 27.23 ± 0.43 | 26.30 ± 0.84 | 26.37 |
OC (kg/ha) 2 | 50.266 ± 3.414 | 53.666 ± 1.377 | 54.466 ± 851 | 52.600 ± 1.677 | 52.750 |
N (mg/kg) 3 | 2356.67 ± 234.21 | 2380.00 ± 122.52 | 2338.00 ± 78.00 | 2090.67 ± 76.93 | 2291.33 |
N (kg/ha) 3 | 4713.33 ± 488.41 | 4760.00 ± 424.41 | 4676.00 ± 156.11 | 4181.33 ± 153.86 | 4582.67 |
P (mg/dm3) 4 | 9.20 ± 2.20 | 10.25 ± 1.32 | 9.66 ± 2.42 | 6.89 ± 1.03 | 9.00 |
P (kg/ha) 4 | 18.40 ± 4.41 | 20.51 ± 2.64 | 19.32 ± 4.85 | 13.79 ± 2.07 | 18.00 |
K (mg/dm3) 5 | 84.72 ± 29.46 | 112.09 ± 19.20 | 110.78 ± 34.18 | 102.96 ± 37.53 | 102.63 |
K (kg/ha) 5 | 169.43 ± 58.92 | 224.17 ± 38.40 | 221.56 ± 68.37 | 205.93 ± 75.05 | 205.27 |
Variable | Treatments | |||||
---|---|---|---|---|---|---|
Full Sun | Silvopastoral | |||||
Fertilization | Without Fertilization | Fertilization | Without Fertilization | Mean 1 | p Value | |
Body weight (kg) | 21.31 ± 2.08 | 21.02 ± 1.79 | 21.19 ± 1.65 | 20.81 ± 0.65 | 21.05 | 0.9966 |
Livestock density (kg/ha) | 23.30 ± 4.79 | 17.26 ± 2.34 | 19.67 ± 3.34 | 17.24 ± 1.93 | 19.37 | 0.5410 |
Total urine excretion (L/ha × day) | 0.732 ± 0.14 | 0.709 ± 0.16 | 0.695 ± 0.10 | 0.512 ± 0.07 | 0.662 | 0.5949 |
Urinary nitrogen (g/L) | 0.459 ± 0.08 | 0.473 ± 0.06 | 0.435 ± 0.08 | 0.405 ± 0.09 | 0.443 | 0.9367 |
Nitrogen returned via urine (g/ha × day) | 0.361 ± 0.12 | 0.334 ± 0.09 | 0.282 ± 0.02 | 0.196 ± 0.05 | 0.293 | 0.4887 |
Leaves | Stems | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Variable | Treatments | Mean | Treatments | Mean 1 | ||||||
Full Sun | Silvopastoral | Full Sun | Silvopastoral | |||||||
Fertilization | Without Fertilization | Fertilization | Without Fertilization | Fertilization | Without Fertilization | Fertilization | Without Fertilization | |||
P | 2.61 ± 0.11 b | 3.27 ± 0.07 a | 2.57 ± 0.19 b | 2.94 ± 0.05 ab | 2.85 | 1.67 ± 0.03 b | 2.12 ± 0.05 a | 1.55 ± 0.14 b | 1.79 ± 0.17 ab | 1.78 |
K | 17.95 ± 1.00 b | 16.79 ± 1.78 b | 26.17 ± 0.52 a | 24.25 ± 1.29 a | 21.29 | 18.13 ± 1.85 | 15.47 ± 2.46 | 20.99 ± 2.50 | 16.62 ± 1.25 | 17.80 |
Ca | 6.47 ± 0.18 a | 5.74 ± 0.12 b | 6.38 ± 0.18 ab | 6.25 ± 0.18 ab | 6.21 | 3.53 ± 0.08 | 3.44 ± 0.05 | 3.55 ± 0.05 | 3.42 ± 0.11 | 3.48 |
Mg | 6.46 ± 0.20 a | 5.17 ± 0.28 b | 5.28 ± 0.31 b | 5.17 ± 0.15 b | 5.52 | 6.06 ± 0.28 a | 5.29 ± 0.32 ab | 4.76 ± 0.35 b | 4.96 ± 0.14 b | 5.27 |
S | 2.34 ± 0.08 ab | 2.51 ± 0.05 a | 2.19 ± 0.06 b | 2.56 ± 0.04 a | 2.40 | 1.94 ± 0.05 b | 2.56 ± 0.12 a | 1.73 ± 0.05 b | 2.57 ± 0.12 a | 2.20 |
N | 28.03 ± 2.52 | 27.03 ± 1.46 | 25.34 ± 1.56 | 26.79 ± 0.59 | 26.80 | 12.62 ± 1.60 | 18.96 ± 2.95 | 14.50 ± 1.24 | 12.10 ± 2.17 | 14.54 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baungratz, A.R.; de Borba, L.P.; de Menezes, B.M.; Porsch, J.L.M.; Venturini, T.; Borquis, R.R.A.; Mesquita, E.E.; Valente, É.E.L.; Macedo, V.d.P. Nutrient Characterization and Mineral Composition of Aruana in a Silvopastoral System with Nitrogen Fertilization. Grasses 2024, 3, 11-18. https://doi.org/10.3390/grasses3010002
Baungratz AR, de Borba LP, de Menezes BM, Porsch JLM, Venturini T, Borquis RRA, Mesquita EE, Valente ÉEL, Macedo VdP. Nutrient Characterization and Mineral Composition of Aruana in a Silvopastoral System with Nitrogen Fertilization. Grasses. 2024; 3(1):11-18. https://doi.org/10.3390/grasses3010002
Chicago/Turabian StyleBaungratz, Andressa Radtke, Leonardo Piffer de Borba, Bruna Martins de Menezes, Jean Lucas Macari Porsch, Tiago Venturini, Rusbel Raúl Aspilcueta Borquis, Eduardo Eustáquio Mesquita, Ériton Egídio Lisboa Valente, and Vicente de Paulo Macedo. 2024. "Nutrient Characterization and Mineral Composition of Aruana in a Silvopastoral System with Nitrogen Fertilization" Grasses 3, no. 1: 11-18. https://doi.org/10.3390/grasses3010002
APA StyleBaungratz, A. R., de Borba, L. P., de Menezes, B. M., Porsch, J. L. M., Venturini, T., Borquis, R. R. A., Mesquita, E. E., Valente, É. E. L., & Macedo, V. d. P. (2024). Nutrient Characterization and Mineral Composition of Aruana in a Silvopastoral System with Nitrogen Fertilization. Grasses, 3(1), 11-18. https://doi.org/10.3390/grasses3010002