Specific Position of the Pulmonary Hilar Node in Cancer Immunity: Immunohistochemical and Morphometrical Study Using Lung Regional Nodes Obtained from Non-Small Cell Cancer Patients Without Metastasis
Abstract
:1. Introduction
2. Results
2.1. Histological Features
2.2. Quantitative Morphometric Analysis
2.3. Comparison Between Upper and Lower Lobe Cancers
2.4. Overlapping Clusters of Immune Cells
2.5. Association with Clinical Variables
3. Discussion
4. Study Limitations
5. Materials and Methods
5.1. Patients and Nodal Specimens
5.2. Immunohistochemistry
5.3. Morphometric Analysis of Clusters of DCs and Macrophages
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
DCs | dendritic cells |
DC-SIGN | dendritic cell-specific ICAM-3-grabbing nonintegrin |
References
- Jin, Z.W.; Aoki, M.; Ueda, K.; Kamimura, G.; Takeda-Harada, A.; Murakami, G.; Sato, M. Human lymph node degeneration in the thoracic region: A morphometric and immunohistochemical analysis using surgically-obtained specimens. Front. Physiol. 2022, 13, 990801. [Google Scholar] [CrossRef]
- Misharin, A.V.; Morales-Nebreda, L.; Reyfman, P.A.; Cuda, C.M.; Walter, J.M.; McQuattie-Pimentel, A.C.; Chen, C.I.; Anekalla, K.R.; Joshi, N.; Williams, K.J.N.; et al. Monocyte-derived alveolar macrophages drive lung fibrosis and persist in the lung over the life span. J. Exp. Med. 2017, 214, 2387–2404. [Google Scholar] [CrossRef]
- Kvedaraite, E.; Ginhoux, F. Human dendritic cells in cancer. Sci. Immunol. 2022, 7, eabm9409. [Google Scholar] [CrossRef] [PubMed]
- Commerford, C.D.; Dieterich, L.C.; He, Y.; Hell, T.; Montoya-Zegarra, J.A.; Noerrelykke, S.F.; Russo, E.; Rōcken, M.; Detmar, M. Mechanisms of tumor-induced lymphovascular niche formation in draining lymph nodes. Cell Rep. 2018, 25, 3554–3563. [Google Scholar] [CrossRef] [PubMed]
- van Pul, K.M.; Vuylsteke, R.J.; van de Ven, R.; Te Velde, E.A.; Rutgers, E.J.T.; van den Tol, P.M.; Stockmann, H.B.; de Gruijl, T.D. Selectively hampered activation of lymph node-resident dendritic cells precedes profound T cell suppression and metastatic spread in the breast cancer sentinel lymph node. J. Immunother. Cancer 2019, 7, 133. [Google Scholar] [CrossRef] [PubMed]
- Heeren, A.M.; Rotman, J.; Samuels, S.; Zijlmans, H.J.M.A.A.; Fons, G.; van de Vijver, K.K.; Bleeker, M.C.; Kenter, G.G.; Jordanova, E.J.; De Gruijl, T.D. Immune landscape in vulvar cancer-draining lymph nodes indicates distinct immune escape mechanisms in support of metastatic spread and growth. J. Immunother. Cancer 2021, 9, e003623. [Google Scholar] [CrossRef]
- Du, H.; Tang, J.; Li, X.; Wang, X.; Wu, L.; Zhang, R.; Hu, P.; Yang, Y. Siglec-15 is an immune suppressor and potential target for immunotherapy in the pre-metastatic lymph node of colorectal cancer. Front. Cell Dev. Biol. 2021, 9, 691937. [Google Scholar] [CrossRef]
- Wei, W.F.; Chen, X.J.; Liang, L.J.; Yu, L.; Wu, X.G.; Zhou, C.F.; Wang, Z.C.; Fan, L.S.; Hu, Z.; Liang, L.; et al. Periostin+ cancer-associated fibroblasts promote lymph node metastasis by impairing the lymphatic endothelial barriers in cervical squamous cell carcinoma. Mol. Oncol. 2021, 15, 210–227. [Google Scholar] [CrossRef]
- Mehta, A.K.; Kadel, S.; Townsend, M.G.; Oliwa, M.; Guerriero, J.L. Macrophage biology and mechanisms of immune suppression in breast cancer. Front. Immunol. 2021, 12, 643771. [Google Scholar] [CrossRef]
- Blayer, C.; Boyer, T.; Peyraud, F.; Domblides, C.; Larmonier, N. Beyond immunosuppression: The multifaced functions of tumor-promoting myeloid cells in breast cancers. Front. Immunol. 2022, 13, 838040. [Google Scholar] [CrossRef]
- Virgilio, T.; Bordini, J.; Cascione, L.; Sartori, G.; Latino, I.; Molina Romero, D.; Leoni, C.; Akhmedov, M.; Rinaldi, A.; Arribas, A.J.; et al. Subcapsular sinus macrophages promote melanoma metastasis to the sentinel lymph nodes via an IL1a-STAT axis. Cancer Immunol. Res. 2022, 10, 1525–1541. [Google Scholar] [CrossRef]
- Gunnarsdottir, F.B.; Briem, O.; Lindgren, A.Y.; Kăllberg, E.; Andersen, C.; Grenthe, R.; Rosenqvist, C.; Millrud, C.R.; Wallgren, M.; Viklund, H.; et al. Breast cancer associated CD169+ macrophages possess broad immunosuppressive functions but enhance antobody secretion by activated B cells. Front. Immunol. 2023, 14, 1180209. [Google Scholar] [CrossRef]
- Ji, S.; Shi, Y.; Yin, B. Macrophage barrier in the tumor microenvironment and potential clinical applications. Cell Commun. Signal 2024, 22, 74. [Google Scholar] [CrossRef] [PubMed]
- Grabowska, J.; Lopez-Venegas, M.A.; Affandi, A.J.; den Haan, J.M.M. CD169+ macrophages capture and dendritic cell instruct: The interplay of the gatekeeper and the general of the immune system. Frint Immunol. 2018, 9, 2472. [Google Scholar] [CrossRef]
- Reis-Sobreiro, M.; da Mota, A.T.; Jardim, C.; Serre, K. Bringing macrophages to the frontline against cancer: Current immunotherapies targeting macrophages. Cells 2021, 10, 2364. [Google Scholar] [CrossRef] [PubMed]
- Fujiwara, Y.; Yano, H.; Shiota, T.; Komohara, Y. Anticancer immune reaction and lymph node sinus macrophages: A review from human and animal studies. J. Clin. Exp. Hematol. 2024, 64, 71–78. [Google Scholar] [CrossRef] [PubMed]
- Kumamoto, K.; Tasaki, T.; Ohnishi, K.; Shibata, M.; Shimajiri, S.; Harada, M.; Komohara, Y.; Nakayama, T. CD169 expression on lymph node macrophages predicts in patients with gastric cancer. Front. Oncol. 2021, 11, 636751. [Google Scholar] [CrossRef]
- Rakaee, M.; Busund, L.R.; Jamaly, S.; Paulsen, E.E.; Richardsen, E.; Andersen, S.; Al-Saad, S.; Bremnes, R.M.; Donnem, T.; Kilvaer, T.K. Prognostic value of macrophage phenotypes in resectable non-small cell lung cancer associated by multiplex immunohistochemistry. Neoplasia 2019, 21, 282–293. [Google Scholar] [CrossRef]
- Kanemitsu, K.; Yamada, R.; Pan, C.; Tsukamoto, H.; Yano, H.; Shiota, T.; Fujiwara, Y.; Miyamoto, Y.; Mikami, Y.; Baba, H.; et al. Age-associated reduction of sinus macrophages in human mesenteric lymph nodes. J. Clin. Exp. Hematop. 2024, 64, 79–85. [Google Scholar] [CrossRef]
- Van Pottelberge, G.R.; Bracke, K.R.; Demedts, I.K.; De Rijck, K.; Reinartz, S.M.; van Drunen, C.M.; Verleden, G.M.; Vermassen, F.E.; Joos, G.F.; Brusselle, G.G. Selective accumulation of langerhans-type dendritic cells in small airways of patients with COPD. Respir. Res. 2010, 11, 35. [Google Scholar] [CrossRef] [PubMed]
- Sonoda, T.; Arigami, T.; Aoki, M.; Matsushita, D.; Shimonosono, M.; Tsuruda, Y.; Sasaki, K.; Ohtsuka, T.; Murakami, G. Difference between sentinel and non-sentinel lymph nodes in the distribution of dendritic cells and macrophages: An immunohistochemical and morphometric study using gastric regional nodes obtained in sentinel node navigation surgery for early gastric cancer. J. Anat. 2025, 246, 272–287. [Google Scholar] [CrossRef] [PubMed]
- Cochran, A.J.; Morton, D.L.; Stern, S.; Lana, A.M.; Essner, R.; Wen, D.R. Sentinel lymph nodes show profound downregulation of antigen-presenting cells of the paracortex: Implication for tumor biology and treatment. Mod. Pathol. 2001, 4, 604–608. [Google Scholar] [CrossRef] [PubMed]
- Matsuura, K.; Yamaguchi, Y.; Ueno, H.; Osaki, A.; Arihiro, K.; Toge, T. Maturation of dendritic cells and T-cell responses in sentinel lymph nodes from patients with breast carcinoma. Cancer 2006, 106, 1227–1236. [Google Scholar] [CrossRef]
- Botella-Estrada, R.; Dasi, F.; Ramos, D.; Nagore, E.; Herrero, M.J.; Giménez, J.; Fuster, C.; Sanmartín, O.; Guillén, C.; Aliño, S. Cytokine expression and dendritic cell density in melanoma sentinel node. Melanoma Res. 2005, 15, 99–106. [Google Scholar] [CrossRef]
- Otto, B.; Koenig, A.M.; Tolstonog, G.V.; Jeschke, A.; Klaetschke, K.; Vashist, Y.K.; Wicklein, D.; Wagener, C.; Izbicki, J.R.; Streichert, T. Molecular changes in pre-metastatic lymph nodes of esophageal cancer patients. PLoS ONE 2014, 9, e102552. [Google Scholar] [CrossRef] [PubMed]
- van Pul, K.M.; Vuylsteke, R.J.C.L.M.; de Beijer, M.T.A.; van de Ven, R.; van den Tol, M.P.; Stockmann, H.B.A.C.; de Gruijl, T.D. Breast cancer-induced immune suppression in the sentinel lymph node is effectively countered by CpG-B in conjunction with inhibition of the JAK2/STAT3 pathway. J. Immunother. Cancer 2020, 8, e000761. [Google Scholar] [CrossRef]
- Maniwa, T.; Shintani, Y.; Okami, J.; Kadota, Y.; Takeuchi, Y.; Takami, K.; Yokouchi, H.; Kurokawa, E.; Kanzaki, R.; Sakamaki, Y.; et al. Upfront surgery in patients with clinical skip N2 lung cancer based on results of modern radiological examinations. J. Thorac. Dis. 2018, 10, 6828–6837. [Google Scholar] [CrossRef]
- Riquet, M.; Dupont, P.; Hidden, G.; Debesse, B. Mediastinal lymphatic pathway of the azygos and aortic arches. Surg. Radiol. Anat. 1991, 13, 149–154. [Google Scholar] [CrossRef]
- Riquet, M. Anatomic basis of lymphatic spread from carcinoma of the lung to the mediastinum: Surgical and prognostic implications. Surg. Radiol. Anat. 1993, 15, 271–277. [Google Scholar] [CrossRef]
- Murakami, G.; Sato, T.; Takiguchi, T. Topographical anatomy of the bronchomediastinal lymph vessels: Their relationships and formation of the collecting trunks. Arch Histol. Cytol. 1990, 53, 219–235. [Google Scholar] [CrossRef]
- Yano, M. Anatomical study of the last mediastinal lymph nodes in relation to the progress of p-N2 non-small cell lung cancer. J. Jpn. Ass Chest Surg. 1993, 7, 643–654. [Google Scholar] [CrossRef]
- Jossifow, G.M. Das Lymphgefässystem des Menschen; Gustav Fisher: Jena, Germany, 1930. [Google Scholar]
- Riquet, M.; Hidden, G.; Debesse, B. Direct drainage of lung segments to the mediastinal nodes. J. Thorac. Cardiovasc. Surg. 1989, 97, 623–632. [Google Scholar] [CrossRef]
- Naruke, T.; Suemasu, K.; Ishikawa, S. Lymph node mapping and curability at various levels of metastasis in resected lung cancer. J. Thorac. Cardiovasc. Surg. 1978, 76, 832–839. [Google Scholar] [CrossRef]
- Okada, M.; Tsubota, N.; Yoshimura, M.; Miyamoto, Y. Proposal for reasonable mediastinal lymphadenectomy in bronchogenic carcinomas: Role of subcarinal nodes in selective dissection. J. Thorac. Cardiovasc. Surg. 1998, 116, 949–953. [Google Scholar] [CrossRef] [PubMed]
- Little, A.G.; DeHoyos, A.; Kirgan, D.M.; Arcomano, T.R.; Murray, K.D. Intraoperative lymphatic mapping for non-small-cell lung cancer: The sentinel node technique. J. Thorac. Cardiovasc. Surg. 1999, 117, 220–224. [Google Scholar] [CrossRef] [PubMed]
- Murakami, G.; Taniguchi, I. Histologic heterogeneity and intranodal shunt flow in lymph nodes from elderly subjects: A cadaveric study. Ann. Surg. Oncol. 2004, 11, 279S–284S. [Google Scholar] [CrossRef]
- Asamura, H.; Nakayama, H.; Kondo, H.; Tsuchiya, R.; Naruke, T. Lobe-specific extent of systematic lymph node dissection for non-small cell lung carcinomas according to a retrospective study of metastasis and prognosis. J. Thorac. Cardiovasc. Surg. 1999, 117, 1102–1111. [Google Scholar] [CrossRef]
- Aokage, K.; Yoshida, J.; Ishii, G.; Hishida, T.; Nishimura, M.; Nagai, K. Subcarinal lymph node in upper lobe non-small cell lung cancer patients: Is selective lymph node dissection valid? Lung Cancer 2010, 70, 163–167. [Google Scholar] [CrossRef]
- Aoki, M.; Jin, Z.W.; Ueda, K.; Kamimura, G.; Takeda-Harada, A.; Murakami, G.; Sato, M. Localization of macrophages and dendritic cells in human thoracic lymph node: An immunohistochemical study using surgically-obtained specimens. J. Anat. 2023, 243, 504–516. [Google Scholar] [CrossRef]
- Yamada, R.; Ohnishi, K.; Pan, C.; Yano, H.; Fujiwara, Y.; Shiota, T.; Mikami, Y.; Komohara, Y. Expression of macrophage/dendritic cell-related molecules in lymph node sinus macrophages. Microbiol. Immunol. 2023, 67, 490–500. [Google Scholar] [CrossRef]
- Saji, H.; Okada, M.; Tsuboi, M.; Nakajima, R.; Suzuki, K.; Aokage, K.; Aoki, T.; Okami, J.; Yoshino, I.; Ito, H.; et al. Segmentectomy versus lobectomy in small-sized peripheral non-small-cell lung cancer (JCOG0802/WJOG4607L): A multicentre, open-label, phase 3, randomised, controlled, non-inferiority trial. Lancet 2022, 399, 1607–1617. [Google Scholar] [CrossRef] [PubMed]
- Bao, F.; Yuan, P.; Yuan, X.; Lv, X.; Wang, Z.; Hu, J. Predictive risk factors for lymph node metastasis in patients with small size non-small cell lung cancer. J. Thorac. Dis. 2014, 6, 1697–1703. [Google Scholar] [CrossRef] [PubMed]
- Robinson, E.M.; Ilonen, I.K.; Tan, K.S.; Plodkowski, A.J.; Bott, M.; Bains, M.S.; Adusumilli, P.S.; Park, B.J.; Rusch, V.W.; Jones, D.R.; et al. Prevalence of Occult Peribronchial N1 Nodal Metastasis in Peripheral Clinical N0 Small (2 cm) Non-Small Cell Lung Cancer. Ann. Thorac. Surg. 2020, 109, 270–276. [Google Scholar] [CrossRef] [PubMed]
- Goldstraw, P.; Crowley, J.; Chansky, K.; Giroux, D.J.; Groome, P.A.; Rami-Porta, R.; Postmus, P.E.; Rusch, V.; Sobin, L.; International Association for the Study of Lung Cancer International Staging Committee. The IASLC Lung Cancer Staging Project: Proposals for the revision of the TNM stage groupings in the forthcoming (seventh) edition of the TNM Classification of malignant tumours. J. Thorac. Oncol. 2007, 2, 706–714. [Google Scholar] [CrossRef]
- Engering, A.; van Vliet, S.J.; Hebeda, K.; Jackson, D.G.; Prevo, R.; Singh, S.K.; Geijtenbeek, T.B.; van Krieken, H.; van Kooyk, Y. Dynamic populations of dendritic cell-specific ICAM-3 grabbing nonintegrin-positive immature dendritic cells and liver/lymph node-specific ICAM-3 grabbing nonintegrin-positive endothelial cells in the outer zones of the paracortex of human lymph nodes. Am. J. Pathol. 2004, 164, 1587–1595. [Google Scholar] [CrossRef]
- Lai, W.K.; Sun, P.J.; Zhang, J.; Jennings, A.; Lalor, P.F.; Hubscher, S.; McKeating, J.A.; Adams, D.H. Expression of DC-SIGN and DC-SIGNR on human sinusoidal endothelium. Am. J. Pathol. 2006, 169, 200–208. [Google Scholar] [CrossRef]
- Park, S.M.; Angel, C.E.; McIntosh, J.; Mansell, C.M.; Chen, C.J.J.; Cebon, J.; Dunbar, P.R. Mapping the distinctive populations of lymphatic endothelial cells in different zones of human lymph nodes. PLoS ONE 2014, 9, e94781. [Google Scholar] [CrossRef]
Site of Nodes | Number of Nodes | Size of Nodes, mm2 | Candidate DC Cluster/Node Area, Mean % a | CD68/Node Area, Mean % b | CD169/Node Area, Mean % c | |
---|---|---|---|---|---|---|
Lower lobe cancer patients | ||||||
Hilar nodes | 16 | 28.3 | 6.6 | 53.5 | 6.1 | |
Low paratracheal nodes | 24 | 21.7 | 17 *** | 41.1 * | 18.2 *** | |
Subcarinal nodes | 20 | 21.7 | 14.8 *** | 37.4 * | 14.1 *** | |
Upper lobe cancer patients | ||||||
Hilar nodes | 19 | 17.2 | 11.5 | 52.0 | 14.4 | |
Low paratracheal nodes | 20 | 29.2 * | 13.6 | 49.4 | 10.2 | |
Subcarinal nodes | 15 | 33.6 | 12.5 | 51.4 | 8.0 | |
DC: dendritic cell a proportion (%) of DC cluster area in the nodal area. b proportion (%) of CD68-positive macrophage cluster area in the nodal area. c proportion (%) of CD169-positive cell cluster area in the nodal area. Significant difference from hilar node: * p < 0.05, *** p < 0.001 |
Age and Sex | Site of Nodes | DC-CD68/CD68 Area, % a | CD169-68/CD68 Area, % b | CD169-DC/DC Area, % c |
---|---|---|---|---|
56M | Hilar node | 1.9 | 4.3 | 24.7 |
Low paratracheal node | 24.3 | 24.7 | 32.7 | |
Subcarinal node | 21.5 | 23.5 | 36.5 | |
56F | Hilar node | 1.9 | 2.4 | 31.1 |
Low paratracheal node | 7.6 | 14.9 | 47.2 | |
Subcarinal node | 19.6 | 15.4 | 39.5 | |
57F | Hilar node | 2.7 | 1.6 | 15.6 |
Low paratracheal node | 16.9 | 7.6 | 41.8 | |
Subcarinal node | 3.8 | 5.6 | 25.7 | |
63F | Hilar node | 6.6 | 3.8 | 34.8 |
Low paratracheal node | 4.0 | 4.6 | 34.6 | |
Subcarinal node | 10.2 | 7.9 | 42.4 | |
63F | Hilar node | 0.7 | 1.1 | 6.9 |
Low paratracheal node | 0.5 | 0.3 | 41.9 | |
Subcarinal node | 4.5 | 2.8 | 43.5 | |
64M | Hilar node | 0.4 | 12.5 | 19.4 |
Low paratracheal node | 12.8 | 13.4 | 14.6 | |
Subcarinal node | 9.3 | 21.9 | 33.3 | |
65M | Hilar node | 6.9 | 28.0 | 17.5 |
Low paratracheal node | 9.1 | 36.2 | 8.0 | |
Subcarinal node | 12.1 | 48.3 | 11.8 | |
66M | Hilar node | 1.7 | 0.9 | 40.6 |
Low paratracheal node | 6.6 | 5.6 | 34.0 | |
Subcarinal node | 4.5 | 2.3 | 29.5 | |
67M | Hilar node | 7.9 | 7.1 | 56.4 |
Low paratracheal node | 3.3 | 2.5 | 24.2 | |
Subcarinal node | 4.9 | 13.1 | 35.5 | |
71F | Hilar node | 5.7 | 5.5 | 42.6 |
Low paratracheal node | 15.5 | 10.3 | 41.9 | |
Subcarinal node | 6.0 | 6.8 | 19.0 | |
72M | Hilar node | 4.6 | 4.5 | 35.3 |
Low paratracheal node | 27.9 | 26.6 | 54.6 | |
Subcarinal node | 5.5 | 36.2 | 23.1 | |
73M | Hilar node | 5.3 | 3.2 | 28.1 |
Low paratracheal node | 8.4 | 46.3 | 24.2 | |
Subcarinal node | 19.3 | 18.0 | 23.5 | |
73M | Hilar node | 6.0 | 2.3 | 23.8 |
Low paratracheal node | 11.9 | 7.3 | 20.2 | |
Subcarinal node | 6.9 | 6.6 | 21.3 | |
76M | Hilar node | 7.0 | 5.1 | 27.9 |
Low paratracheal node | 5.8 | 18.8 | 42.4 | |
Subcarinal node | 8.7 | 3.3 | 28.8 | |
78F | Hilar node | 4.9 | 2.3 | 36.9 |
Low paratracheal node | 16.0 | 20.5 | 27.4 | |
Subcarinal node | 5.4 | 4.0 | 34.3 | |
mean | Hilar node | 4.2 | 5.4 | 28.6 |
Low paratracheal node | 11.1 ** | 17.4 ** | 36.7 | |
Subcarinal node | 9.4 ** | 15.0 * | 28.6 | |
a proportion of the area overlapped with DC clusters in CD68-positive macrophage areas of the node. b proportion of the area overlapped with CD169-positive cell clusters in CD68-positive macrophage areas of the node. c proportion of the area overlapped with CD169-positive cell clusters in DC areas of the node. M: male, F: female Significant difference from hilar node: * p < 0.05, ** p < 0.01 |
Age and Sex | Site of Nodes | DC-CD68/CD68 Area, % a | CD169-68/CD68 Area, % b | CD169-DC/DC Area, % c |
---|---|---|---|---|
50M | Hilar node | 6.3 | 2.1 | 12.4 |
Low paratracheal node | 11.3 | 7.5 | 28.9 | |
Subcarinal node | 11.0 | 4.4 | 4.1 | |
59F | Hilar node | 10.2 | 17.2 | 36.5 |
Low paratracheal node | 8.7 | 4.2 | 25.1 | |
Subcarinal node | 12.3 | 8.0 | 17.7 | |
61M | Hilar node | 21.8 | 23.7 | 48.8 |
Low paratracheal node | 12.9 | 9.6 | 32.6 | |
Subcarinal node | 22.5 | 13.4 | 32.5 | |
62M | Hilar node | 9.5 | 7.7 | 27.7 |
Low paratracheal node | 16.6 | 22.2 | 41.7 | |
Subcarinal node | 10.0 | 11.8 | 16.6 | |
63F | Hilar node | 19.0 | 14.8 | 35.3 |
Low paratracheal node | 14.8 | 10.3 | 28.6 | |
Subcarinal node | 1.5 | 1.0 | 13.7 | |
66M | Hilar node | 4.8 | 6.2 | 30.9 |
Low paratracheal node | 4.9 | 3.5 | 26.9 | |
Subcarinal node | 11.7 | 11.7 | 22.5 | |
68M | Hilar node | 1.7 | 9.5 | 55.1 |
Low paratracheal node | 0.7 | 8.0 | 34.8 | |
Subcarinal node | 2.8 | 3.3 | 24.2 | |
70F | Hilar node | 5.8 | 6.8 | 33.1 |
Low paratracheal node | 5.3 | 4.9 | 42.1 | |
Subcarinal node | 7.1 | 1.7 | 40.6 | |
71F | Hilar node | 4.6 | 2.0 | 33.6 |
Low paratracheal node | 9.5 | 3.7 | 26.4 | |
Subcarinal node | 4.3 | 1.4 | 16.7 | |
74F | Hilar node | 6.7 | 11.1 | 4.1 |
Low paratracheal node | 1.8 | 3.9 | 45.6 | |
Subcarinal node | 4.5 | 1.7 | 29.8 | |
Mean | Hilar node | 9.8 | 11.1 | 32.0 |
Low paratracheal node | 8.8 | 8.0 | 32.7 | |
Subcarinal node | 9.3 | 6.3 | 21.4 * | |
a proportion of the area overlapped with DC clusters in CD68-positive macrophage areas of the node. b proportion of the area overlapped with CD169-positive cell clusters in CD68-positive macrophage areas of the node. c proportion of the area overlapped with CD169-positive cell clusters in DC areas of the node. M: male, F: female Significant difference from hilar node: * p < 0.05 |
Legend | Ig Types | Sources | Final Dilution | Antigen Retrieval |
---|---|---|---|---|
DC-SIGN | Mouse | Santa Cruz sc-65740 (Dallas, TX, USA) | 1:200 | Dako PT Link pH high, 97 °C, 20 min |
CD169 | Rabbit | Abcam ab183356 (Cambridge, UK) | 1:100 | Dako PT Link pH Low, 97 °C, 20 min |
CD68 | Mouse | Dako N0814 (Grostrup, Denmark) | 1:200 | Dako PT Link pH high, 97 °C, 20 min |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aoki, M.; Kamimura, G.; Harada-Takeda, A.; Nagata, T.; Murakami, G.; Ueda, K. Specific Position of the Pulmonary Hilar Node in Cancer Immunity: Immunohistochemical and Morphometrical Study Using Lung Regional Nodes Obtained from Non-Small Cell Cancer Patients Without Metastasis. Lymphatics 2025, 3, 13. https://doi.org/10.3390/lymphatics3020013
Aoki M, Kamimura G, Harada-Takeda A, Nagata T, Murakami G, Ueda K. Specific Position of the Pulmonary Hilar Node in Cancer Immunity: Immunohistochemical and Morphometrical Study Using Lung Regional Nodes Obtained from Non-Small Cell Cancer Patients Without Metastasis. Lymphatics. 2025; 3(2):13. https://doi.org/10.3390/lymphatics3020013
Chicago/Turabian StyleAoki, Masaya, Go Kamimura, Aya Harada-Takeda, Toshiyuki Nagata, Gen Murakami, and Kazuhiro Ueda. 2025. "Specific Position of the Pulmonary Hilar Node in Cancer Immunity: Immunohistochemical and Morphometrical Study Using Lung Regional Nodes Obtained from Non-Small Cell Cancer Patients Without Metastasis" Lymphatics 3, no. 2: 13. https://doi.org/10.3390/lymphatics3020013
APA StyleAoki, M., Kamimura, G., Harada-Takeda, A., Nagata, T., Murakami, G., & Ueda, K. (2025). Specific Position of the Pulmonary Hilar Node in Cancer Immunity: Immunohistochemical and Morphometrical Study Using Lung Regional Nodes Obtained from Non-Small Cell Cancer Patients Without Metastasis. Lymphatics, 3(2), 13. https://doi.org/10.3390/lymphatics3020013