Trading Behavior in Agricultural Commodity Futures around the 52-Week High
Abstract
:1. Introduction
2. Data and Methods
2.1. Futures Prices and Returns
2.2. Trader Positions
3. Empirical Analysis and Discussion
3.1. Trader Positions at the 52-Week High
3.2. Market Timing
4. Discussion
5. Concluding Remarks
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Swan, E.J. Building the Global Market. A 4000 Year History of Derivatives; Kluwer Law International: The Hague, The Netherlands, 2000. [Google Scholar]
- Weber, E.J. Vinzenz Bronzin’s Option Pricing Models. In A Short History of Derivative Security Markets; Springer: Berlin, Germany, 2009. [Google Scholar]
- Hurst, B.; Ooi, Y.H.; Pedersen, L.H. Demystifying managed futures. J. Inv. Manag. 2013, 11, 42–58. [Google Scholar]
- Ederington, L.; Lee, J.H. Who trades futures and how: Evidence from the heating oil futures market. J. Bus. 2002, 75, 353–373. Available online: https://www.jstor.org/stable/10.1086/338706 (accessed on 1 April 2022). [CrossRef]
- Sanders, D.R.; Irwin, S.H.; Merrin, R.P. Smart Money: The forecasting ability of CFTC large traders in agricultural futures markets. J. Agric. Resour. Econ. 2009, 34, 276–296. Available online: https://www.jstor.org/stable/41548414 (accessed on 1 April 2022).
- Mutafoglu, T.H.; Tokat, E.; Tokat, H.A. Forecasting precious metal price movements using trader positions. Resour. Policy 2012, 37, 273–280. [Google Scholar] [CrossRef]
- Heidorn, T.; Mokinski, F.; Rühl, C.; Schmaltz, C. The impact of fundamental and financial traders on the term structure of oil. Energy Econ. 2015, 48, 276–287. [Google Scholar] [CrossRef] [Green Version]
- Cootner, P. Returns to speculators: Tesler vs. Keynes. J. Polit. Econ. 1960, 68, 396–404. Available online: https://www.jstor.org/stable/1830013 (accessed on 1 April 2022). [CrossRef]
- Bianchi, R.; Drew, M.; Fan, J. Commodities momentum: A behavioral perspective. J. Bank. Financ. 2016, 72, 133–150. [Google Scholar] [CrossRef]
- Cheng, I.H.; Xiong, W. Why do hedgers trade so much? J. Leg. Stud. 2014, 43, 183–207. [Google Scholar] [CrossRef] [Green Version]
- Kang, W.; Rouwenhorst, K.G.; Tang, K. A tale of two premiums: The role of hedgers and speculators in commodity futures markets. J. Financ. 2020, 75, 377–417. [Google Scholar] [CrossRef]
- Brunetti, C.; Büyükşahin, B.; Harris, J.H. Speculators, prices, and market volatility. J. Financ. Quant. Anal. 2016, 51, 1545–1574. Available online: https://www.jstor.org/stable/44157831 (accessed on 1 April 2022). [CrossRef] [Green Version]
- Keynes, J.M. Some Aspects of Commodity Markets; Section 13; European Reconstruction Series; Manchester Guardian Commercial: Manchester, UK, 1923; pp. 784–786. [Google Scholar]
- Sanders, D.R.; Boris, K.; Manfredo, M. Hedgers, funds, and small speculators in the energy futures markets: An analysis of the CFTC’s Commitments of Traders reports. Energy Econ. 2004, 26, 425–445. [Google Scholar] [CrossRef]
- Röthig, A.; Chiarella, C. Small traders in currency futures markets. J. Futures Mark. 2011, 31, 898–913. [Google Scholar] [CrossRef] [Green Version]
- Rouwenhorst, K.G.; Tang, K. Commodity investing. Annu. Rev. Financ. Econ. 2012, 4, 447–467. [Google Scholar] [CrossRef]
- Wang, C. Information, trading demand, and futures price volatility. Financ. Rev. 2002, 37, 295–316. [Google Scholar] [CrossRef]
- Wang, C. The behavior and performance of major types of futures traders. J. Futures Mark. 2003, 23, 1–31. [Google Scholar] [CrossRef] [Green Version]
- Kim, A. Does futures speculation destabilize commodity markets? J. Futures Mark. 2015, 35, 696–714. [Google Scholar] [CrossRef]
- Röthig, A. On speculators and hedgers in currency futures markets: Who leads whom? Int. J. Financ. Econ. 2011, 16, 63–69. [Google Scholar] [CrossRef]
- Gorton, G.B.; Hayashi, F.; Rouwenhorst, K.G. The fundamentals of commodity futures returns. Rev. Financ. 2012, 17, 35–105. [Google Scholar] [CrossRef]
- Schwarz, K. Are speculators informed? J. Futures Mark. 2012, 32, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Bryant, H.L.; Bessler, D.A.; Haigh, M.S. Causality in futures markets. J. Futures Mark. 2006, 26, 1039–1057. [Google Scholar] [CrossRef] [Green Version]
- Wang, C. Investor sentiment and return predictability in agricultural futures markets. J. Futures Mark. 2001, 21, 929–952. [Google Scholar] [CrossRef]
- Tornell, A.; Yuan, C. Speculation and hedging in the currency futures markets: Are they informative to the spot exchange rates. J. Futures Mark. 2012, 32, 122–151. [Google Scholar] [CrossRef]
- Dunbar, K.; Jiang, J. What do movements in financial traders’ net long positions reveal about aggregate stock returns? North Am. J. Econ. Finance 2020, 51, 100908. [Google Scholar] [CrossRef]
- Baur, D.G.; Smales, L.A. Trading behaviour in Bitcoin futures: Following the “smart money”. J. Futures Mark. 2022, 42, 1304–1323. [Google Scholar] [CrossRef]
- Leuthold, R.M.; Garcia, P.; Lu, R. The returns and forecasting ability of large traders in the frozen pork bellies futures market. J. Bus. 1994, 67, 459–473. Available online: https://www.jstor.org/stable/2353136 (accessed on 1 April 2022). [CrossRef]
- Wang, C. Investor sentiment, market timing, and futures returns. Appl. Financ. Econ. 2003, 13, 891–898. [Google Scholar] [CrossRef]
- Shen, Q.; Szakmary, A.C.; Sharma, S.C. An examination of momentum strategies in commodity futures markets. J. Futures Mark. 2007, 27, 227–256. [Google Scholar] [CrossRef]
- Zhang, H.; Urquhart, A. Do momentum and reversal strategies work in commodity futures? A comprehensive study. Rev. Behav. Finance 2020, 12, 375–409. [Google Scholar] [CrossRef]
- George, T.J.; Hwang, C.Y. The 52-week high and momentum investing. J. Financ. 2005, 59, 2145–2176. [Google Scholar] [CrossRef]
- Liu, M.; Liu, Q.; Ma, T. The 52-week high momentum strategy in international stock markets. J. Int. Money Financ. 2011, 30, 180–204. [Google Scholar] [CrossRef]
- Marshall, B.R.; Cahan, R.M. Is the 52-week high momentum strategy profitable outside the US? Appl. Financ. Econ. 2006, 15, 1259–1267. [Google Scholar] [CrossRef]
- Hao, Y.; Chou, R.K.; Ko, K.C.; Yang, N.T. The 52-week high, momentum, and investor sentiment. Int. Rev. Financ. Anal. 2018, 57, 167–183. [Google Scholar] [CrossRef]
- Huddart, S.; Lang, M.; Yetman, M.H. Volume and price patterns around a stock’s 52-week highs and lows: Theory and evidence. Manag. Sci. 2009, 55, 16–31. Available online: https://www.jstor.org/stable/40539124 (accessed on 1 April 2022). [CrossRef]
- Sowell, A.; Swearingen, B. Wheat Outlook: March 2022; WHS-22c; United States Department of Agriculture, Economic Research Service: Washington, DC, USA, 2022. Available online: https://www.ers.usda.gov/publications/pub-details/?pubid=103489 (accessed on 1 April 2022).
Panel A: Overall Sample | Level | Returns / First Difference | |||||||
Mean | Std. Dev. | Mean | Std. Dev. | Min. | Max. | Skewness | Kurtosis | ||
Futures Prices | |||||||||
Corn | 358.6 | 148.8 | 0.079 | 3.906 | −32.8 | 23.3 | −0.55 | 9.59 | |
Soymeal | 874.2 | 317.6 | 0.069 | 3.410 | −22.8 | 12.0 | −0.77 | 7.41 | |
Wheat | 474.7 | 174.1 | 0.070 | 4.200 | −23.4 | 24.0 | 0.26 | 5.18 | |
Net Commercial Positions (NP) | |||||||||
Corn | −0.033 | 0.132 | −0.0003 | 0.031 | −0.17 | 0.14 | −0.36 | 6.18 | |
Soymeal | −0.096 | 0.163 | −0.0001 | 0.033 | −0.16 | 0.16 | −0.12 | 4.59 | |
Wheat | −0.007 | 0.141 | −0.00003 | 0.040 | −0.28 | 0.16 | −0.50 | 7.01 | |
Net Non-Commercial Positions (NP) | |||||||||
Corn | 0.094 | 0.122 | 0.0002 | 0.029 | −0.12 | 0.18 | 0.77 | 6.68 | |
Soymeal | 0.107 | 0.122 | 0.0001 | 0.031 | −0.12 | 0.15 | 0.38 | 4.69 | |
Wheat | 0.004 | 0.120 | 0.00003 | 0.035 | −0.15 | 0.21 | 0.60 | 6.95 | |
Panel B: 52 Week High | Level | First Difference | |||||||
Mean | Diff. | Mean | Diff. | ||||||
Net Commercial Positions (NP) | |||||||||
Corn | −0.184 | −15.41 | *** | −0.011 | −4.358 | *** | |||
Soymeal | −0.228 | −10.76 | *** | −0.014 | −5.388 | *** | |||
Wheat | −0.095 | −6.81 | *** | −0.016 | −4.462 | *** | |||
Net Non-Commercial Positions (NP) | |||||||||
Corn | 0.222 | 14.03 | *** | 0.010 | 4.426 | *** | |||
Soymeal | 0.232 | 21.20 | *** | 0.011 | 4.626 | *** | |||
Wheat | 0.109 | 9.698 | *** | 0.014 | 4.121 | *** |
Panel A: CORN | Panel B: SOYBEAN | Panel C: WHEAT | ||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Commercial | Non-Commercial | Commercial | Non-Commercial | Commercial | Non-Commercial | |||||||||||||||||||
ΔNPt | ΔNPt | ΔNPt | ΔNPt | ΔNPt | ΔNPt | ΔNPt | ΔNPt | ΔNPt | ΔNPt | ΔNPt | ΔNPt | |||||||||||||
Intercept | −0.001 | −0.001 | 0.0005 | 0.0005 | 0.0003 | 0.0004 | −0.0002 | −0.0001 | 0.0003 | 0.0006 | −0.0004 | −0.0004 | ||||||||||||
(0.001) | (0.001) | (0.001) | (0.001) | (0.001) | (0.001) | (0.001) | (0.001) | (0.001) | (0.001) | (0.001) | (0.001) | |||||||||||||
Rt−1 | −0.337 | *** | −0.379 | *** | 0.314 | *** | 0.360 | *** | −0.437 | *** | −0.497 | *** | 0.374 | *** | 0.423 | *** | −0.417 | *** | −0.464 | *** | 0.379 | *** | 0.424 | *** |
(0.030) | (0.035) | (0.029) | (0.035) | (0.041) | (0.045) | (0.039) | (0.046) | (0.036) | (0.036) | (0.032) | (0.033) | |||||||||||||
HI52t−1 | 0.001 | 0.001 | 0.005 | 0.006 | * | −0.004 | −0.003 | |||||||||||||||||
(0.003) | (0.003) | (0.003) | (0.003) | (0.005) | (0.004) | |||||||||||||||||||
HI52*Rt−1 | 0.255 | *** | −0.271 | *** | 0.385 | *** | −0.379 | *** | 0.216 | ** | −0.174 | * | ||||||||||||
(0.074) | (0.070) | (0.104) | (0.093) | (0.104) | (0.098) | |||||||||||||||||||
ΔVIXt−1 | −0.001 | −0.001 | 0.002 | 0.002 | 0.002 | 0.001 | −0.0001 | 0.001 | 0.002 | 0.001 | −0.0003 | −0.0003 | ||||||||||||
(0.003) | (0.003) | (0.002) | (0.002) | (0.003) | (0.002) | (0.003) | (0.003) | (0.004) | (0.003) | (0.003) | (0.003) | |||||||||||||
ΔTBILLt−1 | −0.002 | −0.003 | 0.002 | 0.003 | 0.013 | 0.013 | −0.006 | −0.005 | 0.006 | 0.005 | 0.001 | 0.001 | ||||||||||||
(0.009) | (0.009) | (0.008) | (0.008) | (0.010) | (0.009) | (0.009) | (0.009) | (0.012) | (0.012) | (0.010) | (0.010) | |||||||||||||
ΔCRDSPRDt−1 | −0.010 | −0.011 | 0.013 | 0.014 | −0.006 | −0.002 | 0.004 | 0.001 | 0.008 | 0.012 | −0.008 | −0.011 | ||||||||||||
(0.011) | (0.011) | (0.010) | (0.010) | (0.012) | (0.012) | (0.012) | (0.013) | (0.021) | (0.019) | (0.019) | (0.017) | |||||||||||||
ΔTERMt−1 | 0.001 | 0.001 | −0.003 | −0.003 | 0.004 | −0.005 | −0.001 | −0.001 | 0.014 | 0.014 | −0.015 | −0.015 | ||||||||||||
(0.010) | (0.010) | (0.009) | (0.009) | (0.009) | (0.009) | (0.089) | (0.009) | (0.014) | (0.013) | (0.013) | (0.013) | |||||||||||||
ΔNPt−1 | 0.228 | *** | 0.237 | *** | 0.261 | *** | 0.272 | *** | 0.162 | *** | 0.173 | *** | 0.165 | *** | 0.171 | *** | 0.142 | *** | 0.148 | *** | 0.154 | *** | 0.164 | *** |
(0.024) | (0.024) | (0.023) | (0.023) | (0.028) | (0.029) | (0.030) | (0.031) | (0.027) | (0.028) | (0.028) | (0.029) | |||||||||||||
Adj. R2 | 0.255 | 0.268 | 0.262 | 0.277 | 0.252 | 0.268 | 0.218 | 0.224 | 0.220 | 0.228 | 0.225 | 0.234 | ||||||||||||
DW | 2.052 | 2.089 | 2.067 | 2.109 | 2.085 | 2.133 | 2.084 | 2.127 | 2.090 | 2.130 | 2.098 | 2.136 | ||||||||||||
F-Stat | 88.06 | 62.30 | 91.18 | 65.77 | 86.87 | 63.14 | 69.25 | 49.85 | 72.80 | 51.26 | 74.79 | 52.86 | ||||||||||||
No. Obs. | 1525 | 1525 | 1525 | 1525 | 1525 | 1525 | 1525 | 1525 | 1525 | 1525 | 1525 | 1525 |
Null Hypothesis: | Obs | F-Statistic | Prob. |
---|---|---|---|
Panel A: CORN | |||
ΔNP Non-Commerical does not Granger Cause ΔNP Commercial | 1521 | 1.918 | 0.088 |
ΔNP Commerical does not Granger Cause ΔNP Non-Commercial | 3.385 | 0.005 | |
Returns do not Granger Cause ΔNP Commercial | 1521 | 80.218 | <0.0001 |
ΔNP Commerical does not Granger Cause Returns | 0.321 | 0.901 | |
Returns do not Granger Cause ΔNP Non-Commercial | 1521 | 81.070 | <0.0001 |
ΔNP Non-Commerical does not Granger Cause Returns | 0.551 | 0.737 | |
Panel B: SOYBEAN | |||
ΔNP Non-Commerical does not Granger Cause ΔNP Commercial | 1521 | 0.796 | 0.552 |
ΔNP Commerical does not Granger Cause ΔNP Non-Commercial | 6.299 | <0.0001 | |
Returns do not Granger Cause ΔNP Commercial | 1521 | 87.442 | <0.0001 |
ΔNP Commerical does not Granger Cause Returns | 1.644 | 0.145 | |
Returns do not Granger Cause ΔNP Non-Commercial | 1521 | 71.302 | <0.0001 |
ΔNP Non-Commerical does not Granger Cause Returns | 1.803 | 0.109 | |
Panel C: WHEAT | |||
ΔNP Non-Commerical does not Granger Cause ΔNP Commercial | 1521 | 3.408 | 0.005 |
ΔNP Commerical does not Granger Cause ΔNP Non-Commercial | 1.575 | 0.164 | |
Returns do not Granger Cause ΔNP Commercial | 1521 | 82.160 | <0.0001 |
ΔNP Commerical does not Granger Cause Returns | 1.200 | 0.307 | |
Returns do not Granger Cause ΔNP Non-Commercial | 1521 | 86.478 | <0.0001 |
ΔNP Non-Commerical does not Granger Cause Returns | 0.715 | 0.612 |
Panel A: CORN | Panel B: SOYBEAN | Panel C: WHEAT | ||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Commercial | Non-Commercial | Commercial | Non-Commercial | Commercial | Non-Commercial | |||||||||||||||||||
ΔLONG | ΔSHORT | ΔLONG | ΔSHORT | ΔLONG | ΔSHORT | ΔLONG | ΔSHORT | ΔLONG | ΔSHORT | ΔLONG | ΔSHORT | |||||||||||||
Intercept | −0.002 | −0.001 | 0.001 | −0.003 | −0.001 | −0.001 | −0.003 | −0.002 | −0.001 | −0.002 | −0.003 | −0.001 | ||||||||||||
(0.001) | (0.002) | (0.003) | (0.004) | (0.002) | (0.002) | (0.003) | (0.004) | (0.002) | (0.002) | (0.003) | (0.003) | |||||||||||||
Rt−1 | −0.215 | *** | 0.570 | *** | 0.803 | *** | −1.422 | *** | −0.368 | *** | 0.659 | *** | 1.153 | *** | 1.218 | *** | −0.294 | *** | 0.813 | *** | 0.650 | *** | −1.066 | *** |
(0.031) | (0.059) | (0.091) | (0.142) | (0.054) | (0.097) | (0.172) | (0.155) | (0.051) | (0.060) | (0.067) | (0.111) | |||||||||||||
HI52t−1 | 0.010 | * | 0.010 | 0.007 | 0.009 | −0.002 | 0.009 | 0.022 | * | −0.021 | 0.013 | 0.019 | 0.023 | 0.031 | *** | |||||||||
(0.006) | (0.006) | (0.010) | (0.020) | (0.009) | (0.008) | (0.012) | (0.026) | (0.008) | (0.011) | (0.015) | (0.020) | |||||||||||||
HI52*Rt−1 | 0.261 | ** | −0.287 | ** | −0.387 | 0.973 | ** | 0.478 | * | −0.321 | * | −0.533 | 1.669 | *** | 0.129 | −0.407 | * | −0.163 | 0.400 | ** | ||||
(0.119) | (0.132) | (0.237) | (0.446) | (0.271) | (0.186) | (0.335) | (0.617) | (0.109) | (0.223) | (0.240) | (0.162) | |||||||||||||
ΔVIXt−1 | 0.004 | 0.004 | 0.001 | −0.001 | 0.000 | −0.004 | −0.001 | 0.001 | 0.001 | −0.002 | 0.009 | 0.002 | ||||||||||||
(0.004) | (0.005) | (0.001) | (0.002) | (0.004) | (0.006) | (0.001) | (0.001) | (0.005) | (0.008) | (0.009) | (0.002) | |||||||||||||
ΔTBILLt−1 | 0.030 | 0.034 | 0.031 | −0.024 | 0.043 | 0.013 | 0.018 | 0.106 | ** | 0.038 | 0.038 | 0.057 | 0.057 | |||||||||||
(0.035) | (0.037) | (0.040) | (0.064) | (0.038) | (0.040) | (0.050) | (0.049) | (0.038) | (0.037) | (0.044) | (0.055) | |||||||||||||
ΔCRDSPRDt−1 | −0.014 | 0.011 | −0.097 | ** | −0.171 | *** | 0.046 | * | 0.060 | * | −0.076 | * | −0.154 | * | −0.007 | 0.005 | −0.085 | ** | −0.074 | * | ||||
(0.021) | (0.023) | (0.044) | (0.059) | (0.027) | (0.027) | (0.042) | (0.080) | (0.034) | (0.033) | (0.042) | (0.045) | |||||||||||||
ΔTERMt−1 | −0.025 | −0.036 | * | −0.036 | −0.033 | 0.014 | −0.019 | −0.031 | 0.031 | −0.041 | * | −0.024 | −0.016 | −0.170 | ||||||||||
(0.016) | (0.022) | (0.031) | (0.051) | (0.020) | (0.022) | (0.035) | (0.042) | (0.020) | (0.022) | (0.029) | (0.036) | |||||||||||||
DEPt−1 | 0.100 | ** | 0.213 | *** | 0.102 | ** | 0.154 | *** | 0.126 | *** | 0.139 | *** | 0.044 | 0.048 | 0.052 | ** | 0.148 | *** | 0.092 | *** | 0.071 | ** | ||
(0.047) | (0.068) | (0.047) | (0.032) | (0.033) | (0.048) | (0.035) | (0.030) | (0.023) | (0.036) | (0.031) | (0.034) | |||||||||||||
Adj. R2 | 0.034 | 0.148 | 0.098 | 0.111 | 0.047 | 0.103 | 0.100 | 0.064 | 0.025 | 0.162 | 0.080 | 0.084 | ||||||||||||
DW | 2.002 | 2.074 | 2.060 | 2.067 | 1.996 | 2.064 | 2.053 | 2.010 | 1.994 | 2.100 | 2.021 | 2.056 | ||||||||||||
F-Stat | 7.66 | 34.01 | 21.66 | 24.79 | 10.37 | 22.93 | 22.23 | 14.09 | 5.98 | 37.87 | 17.57 | 18.44 | ||||||||||||
No. Obs. | 1525 | 1525 | 1525 | 1525 | 1525 | 1525 | 1525 | 1525 | 1525 | 1525 | 1525 | 1525 |
Panel A | CORN | SOYBEAN | WHEAT | ||||||||
Commercial | Non-Commercial | Commercial | Non-Commercial | Commercial | Non-Commercial | ||||||
Intercept | 0.038 | 0.084 | 0.045 | 0.049 | 0.047 | 0.044 | |||||
(0.106) | (0.127) | (0.106) | (0.112) | (0.103) | (0.111) | ||||||
NPt−1 | 0.384 | −0.639 | −0.039 | −0.014 | 1.277 | * | −1.164 | ||||
(0.816) | (0.881) | (0.549) | (0.672) | (0.740) | (0.932) | ||||||
ΔNPt−1 | −2.799 | 4.124 | −3.742 | 5.332 | ** | 4.438 | −2.851 | ||||
(3.302) | (3.504) | (2.679) | (2.682) | (2.760) | (3.073) | ||||||
HI52t−1 | 0.569 | 0.586 | 0.228 | 0.231 | 0.375 | 0.350 | |||||
(0.369) | (0.369) | (0.317) | (0.309) | (0.489) | (0.435) | ||||||
CONTROLS | YES | YES | YES | YES | YES | YES | |||||
Adj. R2 | 0.004 | 0.004 | 0.005 | 0.006 | 0.008 | 0.006 | |||||
F-Stat | 0.78 | 0.91 | 1.20 | 1.39 | 1.78 | 1.32 | |||||
No. Obs. | 1525 | 1525 | 1525 | 1525 | 1525 | 1525 | |||||
Panel B | CORN | SOYBEAN | WHEAT | ||||||||
Commercial | Non-Commercial | Commercial | Non-Commercial | Commercial | Non-Commercial | ||||||
Intercept | −3.952 | −1.319 | −1.768 | −1.067 | 0.370 | −1.508 | |||||
(0.243) | (1.449) | (1.676) | (1.413) | (2.298) | (1.552) | ||||||
LONGt−1 | 0.711 | *** | 0.041 | −0.025 | 0.127 | 0.392 | −0.015 | ||||
(0.505) | (0.123) | (0.217) | (0.113) | (0.297) | (0.222) | ||||||
ΔLONGt−1 | −2.725 | −0.081 | −1.729 | 0.882 | 2.457 | ** | 0.245 | ||||
(1.842) | (0.807) | (1.333) | (0.692) | (1.235) | (0.886) | ||||||
SHORTt−1 | −0.405 | 0.073 | 0.168 | −0.036 | −0.420 | 0.154 | |||||
(0.405) | (0.120) | (0.218) | (0.114) | (0.355) | (0.181) | ||||||
ΔSHORTt−1 | 0.964 | −1.176 | * | 2.527 | ** | −0.500 | −0.767 | 0.875 | |||
(1.597) | (0.689) | (1.290) | (0.542) | (1.312) | (0.667) | ||||||
HI52t−1 | 0.574 | *** | 0.513 | 0.192 | 0.202 | 0.325 | 0.240 | ||||
(0.368) | (0.378) | (0.297) | (0.301) | (0.486) | (0.501) | ||||||
CONTROLS | YES | YES | YES | YES | YES | YES | |||||
Adj. R2 | 0.006 | 0.006 | 0.009 | 0.008 | 0.008 | 0.006 | |||||
F-Stat | 0.85 | 0.91 | 1.38 | 1.30 | 1.18 | 0.98 | |||||
No. Obs. | 1525 | 1525 | 1525 | 1525 | 1525 | 1525 |
Panel A: 52-Week HIGH | CORN | SOYBEAN | WHEAT | |||||||||
Commercial | Non-Commercial | Commercial | Non-Commercial | Commercial | Non-Commercial | |||||||
Intercept | 4.906 | *** | 4.685 | *** | 2.354 | *** | 2.169 | *** | 6.305 | *** | 6.887 | *** |
(0.591) | (0.722) | (0.412) | (0.553) | (0.588) | (0.685) | |||||||
NPt−1 | 5.137 | −3.072 | −4.276 | *** | 5.167 | ** | 10.499 | *** | −13.656 | *** | ||
(3.412) | (3.356) | (1.634) | (2.058) | (2.819) | (3.253) | |||||||
ΔNPt−1 | 25.317 | *** | −22.843 | *** | −5.017 | 1.488 | −2.362 | −2.050 | ||||
(8.480) | (7.571) | (6.161) | (7.501) | (8.495) | (9.874) | |||||||
CONTROLS | YES | YES | YES | YES | YES | YES | ||||||
Adj. R2 | 0.067 | 0.054 | 0.054 | 0.050 | 0.158 | 0.176 | ||||||
F-Stat | 2.61 | 2.28 | 2.35 | 2.25 | 4.34 | 4.80 | ||||||
No. Obs. | 141 | 141 | 150 | 150 | 107 | 107 | ||||||
Panel B: 52-Week LOW | CORN | SOYBEAN | WHEAT | |||||||||
Commercial | Non-Commercial | Commercial | Non-Commercial | Commercial | Non-Commercial | |||||||
Intercept | −4.356 | *** | −3.928 | *** | −3.723 | −3.828 | *** | −3.481 | *** | −3.772 | *** | |
(0.675) | (0.393) | (0.423) | (0.421) | (0.416) | (0.599) | |||||||
NPt−1 | 5.120 | −8.237 | −0.357 | −3.172 | −1.844 | −2.278 | ||||||
(4.848) | (5.989) | (2.726) | (2.921) | (2.918) | (5.954) | |||||||
ΔNPt−1 | −25.787 | 28.552 | 3.318 | 1.231 | 20.372 | −13.923 | ||||||
(20.048) | (22.038) | (11.612) | (12.241) | (12.960) | (10.518) | |||||||
CONTROLS | YES | YES | YES | YES | YES | YES | ||||||
Adj. R2 | 0.171 | 0.111 | −0.025 | −0.015 | 0.054 | 0.027 | ||||||
F-Stat | 2.35 | 2.53 | 0.67 | 0.80 | 1.83 | 1.41 | ||||||
No. Obs. | 75 | 75 | 80 | 80 | 89 | 89 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Smales, L.A. Trading Behavior in Agricultural Commodity Futures around the 52-Week High. Commodities 2022, 1, 3-17. https://doi.org/10.3390/commodities1010002
Smales LA. Trading Behavior in Agricultural Commodity Futures around the 52-Week High. Commodities. 2022; 1(1):3-17. https://doi.org/10.3390/commodities1010002
Chicago/Turabian StyleSmales, Lee A. 2022. "Trading Behavior in Agricultural Commodity Futures around the 52-Week High" Commodities 1, no. 1: 3-17. https://doi.org/10.3390/commodities1010002
APA StyleSmales, L. A. (2022). Trading Behavior in Agricultural Commodity Futures around the 52-Week High. Commodities, 1(1), 3-17. https://doi.org/10.3390/commodities1010002