Serratus Anterior and Latissimus Dorsi Muscle Activation in Hypopressive Exercises Performed in Open Versus Closed Kinetic Chain: A Cross-Sectional Study
Abstract
1. Introduction
2. Results
3. Discussion
3.1. Limitations
3.2. Future Perspectives
4. Materials and Methods
4.1. Design
4.2. Participants
4.3. Procedures
4.4. Intervention
4.5. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
EMG | Electromyography |
HE | Hypopressive exercise |
LD | Latissimus dorsi |
MVIC | Maximal voluntary isometric contraction |
SA | Serratus anterior |
sEMG | Surface electromyography |
References
- Hernández Rovira, E.; Rebullido, T.R.; Cañabate, D.; Torrents Martí, C. What Is Known from the Existing Literature about Hypopressive Exercise? A PAGER-Compliant Scoping Review. J. Integr. Complement. Med. 2024, 30, 913–924. [Google Scholar] [CrossRef] [PubMed]
- Navarro Brazález, B.; Sánchez Sánchez, B.; Prieto Gómez, V.; De La Villa Polo, P.; McLean, L.; Torres Lacomba, M. Pelvic floor and abdominal muscle responses during hypopressive exercises in women with pelvic floor dysfunction. Neurourol. Urodyn. 2020, 39, 793–803. [Google Scholar] [CrossRef] [PubMed]
- Bellido-Fernández, L.; Jiménez-Rejano, J.J.; Chillón-Martínez, R.; Lorenzo-Muñoz, A.; Pinero-Pinto, E.; Rebollo-Salas, M. Clinical relevance of massage therapy and abdominal hypopressive gymnastics on chronic nonspecific low back pain: A randomized controlled trial. Disabil. Rehabil. 2022, 44, 4233–4240. [Google Scholar] [CrossRef] [PubMed]
- Vicente-Campos, D.; Sanchez-Jorge, S.; Terrón-Manrique, P.; Guisard, M.; Collin, M.; Castaño, B.; Rodríguez-Sanz, D.; Becerro-De-Bengoa-Vallejo, R.; Chicharro, J.L.; Calvo-Lobo, C. The Main Role of Diaphragm Muscle as a Mechanism of Hypopressive Abdominal Gymnastics to Improve Non-Specific Chronic Low Back Pain: A Randomized Controlled Trial. J. Clin. Med. 2021, 10, 4983. [Google Scholar] [CrossRef]
- Fernández-López, I.; Peña-Otero, D.; Eguillor-Mutiloa, M.; Bravo-Llatas, C.; Atín-Arratibel, M.D.L.Á. Manual therapy on the diaphragm is beneficial in reducing pain and improving shoulder mobility in subjects with rotator cuff injury: A randomized trial. Int. J. Osteopath. Med. 2023, 50, 100682. [Google Scholar] [CrossRef]
- Rebullido, T.R.; Chulvi-Medrano, I. The Abdominal Vacuum Technique for Bodybuilding. Strength Cond. J. 2020, 42, 116–120. [Google Scholar] [CrossRef]
- Machado, V.; Dornelas De Andrade, A.; Rattes, C.; Gonçalves, M.; Fregonezi, G.; Filho, V.G.; Lemos, A. Effects of abdominal hypopressive gymnastics in the volume distribution of chest wall and the electromyographic activity of the respiratory muscles. Physiotherapy 2015, 101, e322–e323. [Google Scholar] [CrossRef]
- Neumann, D.A.; Camargo, P.R. Kinesiologic considerations for targeting activation of scapulothoracic muscles—Part 1: Serratus anterior. Braz. J. Phys. Ther. 2019, 23, 459–466. [Google Scholar] [CrossRef]
- Lomax, M.; Tasker, L.; Bostanci, O. An electromyographic evaluation of dual role breathing and upper body muscles in response to front crawl swimming. Scand. J. Med. Sci. Sports 2015, 25, e472–e478. [Google Scholar] [CrossRef]
- Willard, F.H.; Vleeming, A.; Schuenke, M.D.; Danneels, L.; Schleip, R. The thoracolumbar fascia: Anatomy, function and clinical considerations. J. Anat. 2012, 221, 507–536. [Google Scholar] [CrossRef]
- Watson, A.H.D.; Williams, C.; James, B.V. Activity patterns in latissimus dorsi and sternocleidomastoid in classical singers. J. Voice 2012, 26, e95–e105. [Google Scholar] [CrossRef] [PubMed]
- Mendez-Rebolledo, G.; Orozco-Chavez, I.; Morales-Verdugo, J.; Ramirez-Campillo, R.; Cools, A.M.J. Electromyographic analysis of the serratus anterior and upper trapezius in closed kinetic chain exercises performed on different unstable support surfaces: A systematic review and meta-analysis. PeerJ 2022, 10, e13589. [Google Scholar] [CrossRef] [PubMed]
- Pozzi, F.; Plummer, H.A.; Sanchez, N.; Lee, Y.; Michener, L.A. Electromyography activation of shoulder and trunk muscles is greater during closed chain compared to open chain exercises. J. Electromyogr. Kinesiol. 2022, 62, 102306. [Google Scholar] [CrossRef] [PubMed]
- Gioftsos, G.; Arvanitidis, M.; Tsimouris, D.; Kanellopoulos, A.; Paras, G.; Trigkas, P.; Sakellari, V. EMG activity of the serratus anterior and trapezius muscles during the different phases of the push-up plus exercise on different support surfaces and different hand positions. J. Phys. Ther. Sci. 2016, 28, 2114–2118. [Google Scholar] [CrossRef]
- Mendez-Rebolledo, G.; Morales-Verdugo, J.; Orozco-Chavez, I.; Habechian, F.A.P.; Padilla, E.L.; De La Rosa, F.J.B. Optimal activation ratio of the scapular muscles in closed kinetic chain shoulder exercises: A systematic review. J. Back Musculoskelet. Rehabil. 2021, 34, 3–16. [Google Scholar] [CrossRef]
- Digiovine, N.M.; Jobe, F.W.; Pink, M.; Perry, J. An electromyographic analysis of the upper extremity in pitching. J. Shoulder Elb. Surg. 1992, 1, 15–25. [Google Scholar] [CrossRef]
- Hardwick, D.H.; Beebe, J.A.; McDonnell, M.K.; Lang, C.E. A comparison of serratus anterior muscle activation during a wall slide exercise and other traditional exercises. J. Orthop. Sports Phys. Ther. 2006, 36, 903–910. [Google Scholar] [CrossRef]
- Lomax, M.; Tasker, L.; Bostanci, O. Inspiratory muscle fatigue affects latissimus dorsi but not pectoralis major activity during arms only front crawl sprinting. J. Strength Cond. Res. 2014, 28, 2262–2269. [Google Scholar] [CrossRef]
- Ithamar, L.; De Moura Filho, A.G.; Benedetti Rodrigues, M.A.; Cortez, K.C.D.; Machado, V.G.; Lima, C.R.O.d.P.; Moretti, E.; Lemos, A. Abdominal and pelvic floor electromyographic analysis during abdominal hypopressive gymnastics. J. Bodyw. Mov. Ther. 2018, 22, 159–165. [Google Scholar] [CrossRef]
- Quiroz Sandoval, G.A.; Tabilo, N.; Bahamondes, C.; Bralic, P. Surface electromyography comparison of the abdominal hypopressive gymnastics against the prone bridge exercise. Rev. Andal. Med. Deporte 2019, 12, 243–246. [Google Scholar] [CrossRef]
- De Oliveira Scatolin, R.; Hotta, G.H.; Cools, A.M.; Custodio, G.A.P.; De Oliveira, A.S. Effect of conscious abdominal contraction on the activation of periscapular muscles in individuals with subacromial pain syndrome. Clin. Biomech. 2021, 84, 105349. [Google Scholar] [CrossRef] [PubMed]
- Besomi, M.; Devecchi, V.; Falla, D.; McGill, K.; Kiernan, M.C.; Merletti, R.; van Dieën, J.H.; Tucker, K.; Clancy, E.A.; Søgaard, K.; et al. Consensus for experimental design in electromyography (CEDE) project: Checklist for reporting and critically appraising studies using EMG (CEDE-Check). J. Electromyogr. Kinesiol. 2024, 76, 102874. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Lawrence Erlbaum Associates: Mahwah, NJ, USA, 1988. [Google Scholar]
- Lakens, D. Calculating and reporting effect sizes to facilitate cumulative science: A practical primer for t-tests and ANOVAs. Front. Psychol. 2013, 4, 863. [Google Scholar] [CrossRef] [PubMed]
- Craig, C.L.; Marshall, A.L.; Sjöström, M.; Bauman, A.E.; Booth, M.L.; Ainsworth, B.E.; Pratt, M.; Ekelund, U.L.; Yngve, A.; Sallis, J.F.; et al. International physical activity questionnaire: 12-country reliability and validity. Med. Sci. Sports Exerc. 2003, 35, 1381–1395. [Google Scholar] [CrossRef]
- Molina-Molina, A.; Ruiz-Malagón, E.J.; Carrillo-Pérez, F.; Roche-Seruendo, L.E.; Damas, M.; Banos, O.; García-Pinillos, F. Validation of mDurance, A Wearable Surface Electromyography System for Muscle Activity Assessment. Front. Physiol. 2020, 11, 606287. [Google Scholar] [CrossRef]
- Hermens, H.J.; Freriks, B.; Disselhorst-Klug, C.; Rau, G. Development of recommendations for SEMG sensors and sensor placement procedures. J. Electromyogr. Kinesiol. 2000, 10, 361–374. [Google Scholar] [CrossRef]
- Ekstrom, R.A.; Soderberg, G.L.; Donatelli, R.A. Normalization procedures using maximum voluntary isometric contractions for the serratus anterior and trapezius muscles during surface EMG analysis. J. Electromyogr. Kinesiol. 2005, 15, 418–428. [Google Scholar] [CrossRef]
Confidence Interval at 95% | ||||
---|---|---|---|---|
Characteristics | Mean (SD) | Lower Limit | Upper Limit | Median |
Age (years) | 42.9 (8.13) | 39.56 | 46.28 | 45 |
Height (m) | 1.67 (0.07) | 1.64 | 1.70 | 1.65 |
Mass (kg) | 62.63 (10.52) | 58.28 | 66.97 | 60.00 |
BMI (kg/m2) | 22.07 (3.14) | 20.77 | 23.37 | 21.40 |
IPAQ (MET/week) | 4112.15 (3595.12) | 2628.16 | 5596.15 | 2490.00 |
Confidence Interval at 95% | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Muscle | Exercise | Chain | Mean (SD) | Lower Limit | Upper Limit | Median | Mean Differences | W | p | r |
Left serratus anterior (µV) | Standing | Open-chain | 87.73 (80.41) | 54.60 | 120.9 | 70.91 | −11.89 | 41 | <0.001 ** | −0.74 |
Closed-chain | 107.1 (92.65) | 68.90 | 145.4 | 85.46 | ||||||
Kneeling | Open-chain | 78.2 (49.16) | 57.94 | 98.5 | 72.76 | −14.50 | 9 | <0.001 ** | −0.94 | |
Closed-chain | 100.0 (71.63) | 70.42 | 129.6 | 81.04 | ||||||
Seated | Open-chain | 93.9 (77.09) | 62.07 | 125.7 | 76.07 | −28.21 | 9 | <0.001 ** | −0.94 | |
Closed-chain | 26.8 (15.13) | 20.53 | 33.0 | 22.80 | ||||||
Right serratus anterior (µV) | Standing | Open-chain | 93.6 (60.82) | 68.51 | 118.7 | 85.58 | −16.47 | 2 | <0.001 ** | −0.98 |
Closed-chain | 72.7 (50.54) | 51.84 | 93.6 | 63.95 | ||||||
Kneeling | Open-chain | 74.2 (40.99) | 57.31 | 91.1 | 68.56 | −17.50 | 1 | <0.001 ** | −0.99 | |
Closed-chain | 94.1 (48.74) | 74.02 | 114.3 | 89.75 | ||||||
Seated | Open-chain | 84.7 (58.92) | 60.34 | 109.0 | 63.18 | −26.90 | 19 | <0.001 ** | −0.88 | |
Closed-chain | 115.2 (74.66) | 84.35 | 146.0 | 88.20 | ||||||
Left latissimus dorsi (µV) | Standing | Open-chain | 27.2 (9.87) | 23.16 | 31.3 | 25.95 | −1.67 | 114 | 0.20 | −0.29 |
Closed-chain | 29.1 (9.84) | 25.03 | 33.2 | 28.70 | ||||||
Kneeling | Open-chain | 26.0 (9.63) | 22.07 | 30.0 | 24.43 | −2.18 | 117 | 0.23 | −0.28 | |
Closed-chain | 28.2 (9.94) | 24.05 | 32.3 | 26.21 | ||||||
Seated | Open-chain | 30.0 (12.19) | 24.97 | 35.0 | 26.07 | −5.02 | 26 | <0.001 ** | −0.84 | |
Closed-chain | 35.6 (11.07) | 31.03 | 40.2 | 35.73 | ||||||
Right latissimus dorsi (µV) | Standing | Open-chain | 26.8 (11.65) | 21.98 | 31.6 | 22.58 | −2.07 | 99 | 0.09 | −0.39 |
Closed-chain | 28.6 (10.99) | 24.02 | 33.1 | 23.81 | ||||||
Kneeling | Open-chain | 25.9 (9.48) | 21.97 | 29.8 | 23.99 | 0.17 | 170 | 0.85 | 0.04 | |
Closed-chain | 26.5 (11.31) | 21.87 | 31.2 | 22.27 | ||||||
Seated | Open-chain | 28.7 (10.76) | 24.30 | 33.2 | 25.60 | −5.60 | 20 | <0.001 ** | −0.87 | |
Closed-chain | 35.2 (12.92) | 29.84 | 40.5 | 30.69 |
Chain | Muscle | χ2 | p |
---|---|---|---|
Open-chain | Left serratus anterior (µV) | 1.42 | 0.31 |
Right serratus anterior (µV) | 2.96 | 0.22 | |
Left latissimus dorsi (µV) | 8.24 | 0.01 * | |
Right latissimus dorsi (µV) | 5.36 | 0.06 | |
Closed-chain | Left serratus anterior (µV) | 7.44 | 0.02 * |
Right serratus anterior (µV) | 10.3 | 0.006 ** | |
Left latissimus dorsi (µV) | 27 | <0.001 ** | |
Right latissimus dorsi (µV) | 29.4 | <0.001 ** |
Chain | Muscle | Exercises | DC | p |
---|---|---|---|---|
Open-chain | Left latissimus dorsi (µV) | Standing–Kneeling | 1.06 | 0.29 |
Standing–Seated | 1.97 | 0.05 | ||
Kneeling–Seated | 3.03 | 0.004 ** | ||
Closed-chain | Left serratus anterior (µV) | Standing–Kneeling | 0.45 | 0.65 |
Standing–Seated | 2.70 | 0.009 ** | ||
Kneeling–Seated | 2.25 | 0.02 * | ||
Right serratus anterior (µV) | Standing–Kneeling | 0.46 | 0.643 | |
Standing–Seated | 3.26 | 0.002 ** | ||
Kneeling–Seated | 2.80 | 0.007 * | ||
Left latissimus dorsi (µV) | Standing–Kneeling | 1.02 | 0.313 | |
Standing–Seated | 5.92 | <0.001 * | ||
Kneeling–Seated | 6.94 | <0.001 * | ||
Right latissimus dorsi (µV) | Standing–Kneeling | 0.86 | 0.393 | |
Standing–Seated | 6.68 | <0.001 * | ||
Kneeling–Seated | 7.54 | <0.001 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hernández Rovira, E.; Alonso-Aubin, D.A.; Cañabate Ortiz, D.; Torrents Martín, C.; Rial Rebullido, T. Serratus Anterior and Latissimus Dorsi Muscle Activation in Hypopressive Exercises Performed in Open Versus Closed Kinetic Chain: A Cross-Sectional Study. Muscles 2025, 4, 20. https://doi.org/10.3390/muscles4030020
Hernández Rovira E, Alonso-Aubin DA, Cañabate Ortiz D, Torrents Martín C, Rial Rebullido T. Serratus Anterior and Latissimus Dorsi Muscle Activation in Hypopressive Exercises Performed in Open Versus Closed Kinetic Chain: A Cross-Sectional Study. Muscles. 2025; 4(3):20. https://doi.org/10.3390/muscles4030020
Chicago/Turabian StyleHernández Rovira, Esther, Diego A. Alonso-Aubin, Dolors Cañabate Ortiz, Carlota Torrents Martín, and Tamara Rial Rebullido. 2025. "Serratus Anterior and Latissimus Dorsi Muscle Activation in Hypopressive Exercises Performed in Open Versus Closed Kinetic Chain: A Cross-Sectional Study" Muscles 4, no. 3: 20. https://doi.org/10.3390/muscles4030020
APA StyleHernández Rovira, E., Alonso-Aubin, D. A., Cañabate Ortiz, D., Torrents Martín, C., & Rial Rebullido, T. (2025). Serratus Anterior and Latissimus Dorsi Muscle Activation in Hypopressive Exercises Performed in Open Versus Closed Kinetic Chain: A Cross-Sectional Study. Muscles, 4(3), 20. https://doi.org/10.3390/muscles4030020